Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T17:14:58.700Z Has data issue: false hasContentIssue false

Functional analysis of sabertooth cranial morphology

Published online by Cambridge University Press:  08 February 2016

Sharon B. Emerson
Affiliation:
Biology Department, University of Illinois Chicago Circle, Box 4348, Chicago, Ill. 60680
Leonard Radinsky
Affiliation:
Anatomy Department, University of Chicago, 1025 E. 57th St., Chicago, Ill. 60637

Abstract

Elongate canines evolved independently at least four times among mammalian carnivores, and each time skulls were modified in similar ways. We have compared the cranial morphology of sabertooths to that of their non-sabertoothed relatives, living and extinct, and applied simple biomechanical models to elucidate the functional significance of the morphological differences. Our analysis suggests that (1) sabertooth morphology represents modification for wider gape with retention of a powerful bite force at the carnassial; (2) sabertooths probably used a throat or ventral neck slash to kill prey; and (3) elongate canines and retractile claws may have facilitated the exploitation of relatively larger prey by sabertooths compared to non-sabertooth carnivores.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bohlin, B. 1940. Food habit of the machaerodonts, with special regard to Smilodon. Bull. Geol. Inst. Upsala. 28:156174.Google Scholar
Bohlin, B. 1947. The sabre-toothed tigers once more. Bull. Geol. Inst. Upsala. 32:1120.Google Scholar
Bonis, L. de. 1976. Un félidé à longues canines de la colline de Perrier (Puy-de-Dôme): ses rapports avec les félinés machairodontes. Ann. Paléontol. 62:159198.Google Scholar
Ewer, R. F. 1954. Sabre-toothed tigers. New Biology. 17:2740.Google Scholar
Ewer, R. F. 1973. The Carnivores. 494 pp. Cornell Univ. Press; Ithaca, N.Y.Google Scholar
Gazin, C. L. 1946. Machaeroides eothen Matthew, the sabertooth creodont of the Bridger Eocene. Proc. U.S. Nat. Mus. 96:335347.CrossRefGoogle Scholar
Gonyea, W. J. 1976. Behavioral implications of saber-toothed felid morphology. Paleobiology. 2:332342.CrossRefGoogle Scholar
Herring, S., Grimm, A., and Grimm, B. 1979. Functional heterogeneity in a multipinnate muscle. Am. J. Anat. 154:563576.CrossRefGoogle Scholar
Herring, S. W. and Herring, S. E. 1974. The superficial masseter and gape in mammals. Am. Nat. 108:561575.CrossRefGoogle Scholar
Hough, J. 1949. The habits and adaptation of the Oligocene saber tooth carnivore, Hoplophoneus. U.S. Geol. Surv. Prof. Pap. 221-H:125137.Google Scholar
Kurtén, B. 1952. The Chinese Hipparion fauna. Comment. Biol. (Soc. Sci. Fennica). 13:182.Google Scholar
Leyhausen, P. 1965. Über die Funktion der relativen Stimmungshierarchie. Z. Tierpsychol. 22:412494.CrossRefGoogle Scholar
MacKenna, B. R. and Türker, K. 1978. Twitch tension in the jaw muscles of the cat at various degrees of mouth opening. Arch. Oral Biol. 23:917920.CrossRefGoogle ScholarPubMed
Matthew, W. D. 1910. The phylogeny of the Felidae. Bull. Am. Mus. Nat. Hist. 28:289318.Google Scholar
Merriam, J. C. and Stock, C. 1932. The Felidae of Rancho la Brea. Carnegie Inst. Washington. Publ. No. 422:3231.Google Scholar
Miller, G. J. 1969. A new hypothesis to explain the method of food ingestion used by Smilodon californicus Bovard. Tebiwa. 12:926.Google Scholar
Radinsky, L. 1978. Evolution of brain size in carnivores and ungulates. Am. Nat. 112:815831.CrossRefGoogle Scholar
Rautenbach, I. L. and Nel, J. A. J. 1978. Coexistence in Transvaal Carnivora. Bull. Carnegie Mus. Nat. 6:138145.Google Scholar
Riggs, E. S. 1934. A new marsupial saber-tooth from the Pliocene of Argentina and its relationships to other South American predacious marsupials. Trans. Am. Philos. Soc. 24:131.CrossRefGoogle Scholar
Rosenzweig, M. L. 1966. Community structure in sympatric carnivora. J. Mammal. 47:602612.CrossRefGoogle Scholar
Schaller, G. 1972. The Serengeti Lion. 480 pp. Univ. Chicago Press; Chicago, Illinois.Google Scholar
Schultz, C. B., Schultz, M. R., and Martin, L. D. 1970. A new tribe of saber-toothed cats (Barbourofelini) from the Pliocene of North America. Bull. Univ. Nebraska State Mus. 9:131.Google Scholar
Scott, W. B. 1938. A problematical cat-like mandible from the Uinta Eocene, Apataelurus kayi, Scott. Ann. Carnegie Mus. 27:113120.CrossRefGoogle Scholar
Scott, W. B. and Jepsen, G. L. 1936. The mammalian fauna of the White River Oligocene. Pt. I. Insectivora and Carnivora. Trans. Am. Philos. Soc. 28:1153.CrossRefGoogle Scholar
Simpson, G. G. 1941. The function of saber-like canines in carnivorous mammals. Am. Mus. Novitates. 1130:112.Google Scholar
Thexton, A. and Hiiemae, K. 1975. The twitch characteristics of opossum jaw musculature. Arch. Oral Biol. 20:743748.CrossRefGoogle ScholarPubMed
Turnbull, W. D. 1978. Another look at dental specialization in the extinct sabre-toothed marsupial, Thylacosmilus, compared with its placental counterparts. Pp. 388414. In: Joysey, K. A., ed. Development, Function and Evolution of Teeth. Academic Press; London.Google Scholar