Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T17:23:18.033Z Has data issue: false hasContentIssue false

Fourier analysis applied to Stephanomys (Rodentia, Muridae) molars: nonprogressive evolutionary pattern in a gradual lineage

Published online by Cambridge University Press:  14 July 2015

Sabrina Renaud
Affiliation:
Institut des Sciences de l'Evolution, CC064, Université Montpellier II, 34095 Montpellier Cedex 05, France
Jacques Michaux
Affiliation:
Institut des Sciences de l'Evolution, CC064, Université Montpellier II, 34095 Montpellier Cedex 05, France
Jean-Jacques Jaeger
Affiliation:
Institut des Sciences de l'Evolution, CC064, Université Montpellier II, 34095 Montpellier Cedex 05, France
Jean-Christophe Auffray
Affiliation:
Institut des Sciences de l'Evolution, CC064, Université Montpellier II, 34095 Montpellier Cedex 05, France

Abstract

Size and shape are analyzed for Pliocene lineages of the rodent genus Stephanomys Schaub 1938. Previous phylogenetic studies were based mainly on size variation and descriptive comparisons, without any attempt to quantify shape changes. Hence, on the basis of regular size increase, Stephanomys has been considered a prime example of phyletic gradualism. In order to quantify morphological variation within the lineage, a method for analyzing complex outlines, the elliptic Fourier transform, was applied to tooth contour (upper and lower first molars). It was then possible to compare evolution in size, estimated by tooth area, as well as evolution of shape, represented by Fourier coefficients.

While size seems to change gradually through time, morphology gives a rather discontinuous evolutionary pattern for both the upper and lower molar. Such a discrepancy between the evolution of size and shape of a single structure suggests that different genetic determinisms and mechanical constraints may act on size and shape. Hence it may be misleading to infer generalized evolutionary processes from either size or shape alone.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aguilar, J.-P., Bachelet, B., Bonnet, A., Lesage, J.-L., and Michaux, J. 1993. Le gisement karstique du Grand Serre (commune de Montclus, Gard). Donnés nouvelles sur les faunes de rongeurs du Pliocène terminal dans le Sude de la France. Geobios 26:633640.Google Scholar
Aguilar, J.-P., Legendre, S., Michaux, J., and Montuire, S. In press. Pliocene Mammals and climatic reconstruction in the Western Mediterranean area. American Association of Stratigraphic Palynologists Contribution Series.Google Scholar
Bachelet, B., and Castillo-Ruiz, C. 1990. Radiation évolutive et lignées chez les Stephanomys (Rodentia, Mammalia), muridés dominants du Pliocène d'Europe sud-occidentale. Comptes Rendus de l'Académie des Sciences série 2 311:493499.Google Scholar
Bachelet, B., Aguilar, J.-P., Calvet, M., and Michaux, J. 1990. Nouvelles faunes de rongeurs du Pliocène des Pyrénées-Orientales: conséquence pour le genre Stephanomys (Schaub, 1938). Geobios 23:117120.CrossRefGoogle Scholar
Bachelet, B., Esteban Aenelle, J., and Lopez-Martinez, N. 1991. Révision des populations de Mimomys de petite taille (Rodentia, Mammalia) du Pliocène supérieur d'Europe sud-occidentale. Geobios 22:349360.CrossRefGoogle Scholar
Charlesworth, B. 1984. Some quantitative methods for studying evolutionary patterns in single characters. Paleobiology 10:308318.CrossRefGoogle Scholar
Cheetham, A. H. 1986. Tempo of evolution in a Neogene bryozoan: rates of morphologic change within and across species boundaries. Paleobiology 12:190202.CrossRefGoogle Scholar
Cheetham, A. H. 1987. Tempo of evolution in a Neogene bryozoan: are trends in single morphologic characters misleading? Paleobiology 13:286296.CrossRefGoogle Scholar
Clyde, W. C., and Gingerich, P. D. 1994. Rates of evolution in the dentition of early Eocene Cantius: comparison of size and shape. Paleobiology 20:506522.CrossRefGoogle Scholar
Cordy, J.-M. 1976. Essai sur la microévolution du genre Stephanomys (Rodentia, Muridae). Thèse, Liège, Nélissen Ed. Angleur.Google Scholar
Cordy, J.-M. 1978. Caractéristiques générales de la microévolution du genre Stephanomys (Rodentia, Muridae). Bulletin de la Société Géologique de France 48:815819.CrossRefGoogle Scholar
Denys, C. 1994. Diet and dental morphology of two coexisting Aethomys species (Rodentia, Mammalia) in Mozambique. Implications for diet reconstruction in related extinct species from South Africa. Acta Theriologica 39:357364.Google Scholar
Depéret, C. 1890-1897. Les animaux pliocènes du Roussillon. Mémoires de la Société Géologique de France.Google Scholar
Ferson, S., Rohlf, F. J., and Koehn, R. K. 1985. Measuring shape variation of two-dimensional outlines. Systematic Zoology 34:5968.CrossRefGoogle Scholar
Gingerich, P. D. 1982. Origin and evolution of species: evidence from the fossil record. Colloques internationaux du CNRS, Paris 330:195199.Google Scholar
Gingerich, P. D. 1986. Evolution of the fossil record: patterns, rates and processes. Canadian Journal of Zoology 65:10531060.CrossRefGoogle Scholar
Gmelig-Meyling, C., and Michaux, J. 1973. Le genre Stephanomys Schaub 1938 (Rodentia, Mammalia); son évolution au Pliocène supérieur. Comptes Rendus de l'Académie des Sciences, série D 277:14411444.Google Scholar
Gould, S. J., and Eldredge, N. 1993. Punctuated equilibrium comes of age. Nature 366:223227.CrossRefGoogle ScholarPubMed
Hallam, A. 1978. How rare is phyletic gradualism and what is its evolutionary significance? Evidence from Jurassic bivalves. Paleobiology 4:1625.CrossRefGoogle Scholar
Jaeger, J.-J. 1982. Equilibres ponctués et gradualisme phylétique: un faux débat? Colloques internationaux du CNRS, Paris 330:145153.Google Scholar
Johnson, D. R., O'Higgins, P., and McAndrew, T. J. 1988. The effect of replicated selection for body weight in mice on vertebral shape. Genetical Research 51:129135.CrossRefGoogle ScholarPubMed
Kitchell, J. A., Estabrook, G., and MacLeod, N. 1987. Testing for equality of rates of evolution. Paleobiology 13:272285.CrossRefGoogle Scholar
Kuhl, F. P., and Giardina, C. R. 1982. Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing 18:259278.CrossRefGoogle Scholar
Leamy, L. 1984. Morphometric studies in inbred and hybrid house mice. Heterosis, homeostasis and heritability of size and shape. Biological Journal of the Linnean Society 22:233241.Google Scholar
Legendre, S. 1989. Les communautés de mammifères du Paléogène (Eocène supérieur et Oligicène) d'Europe occidentale: structures, milieu et évolution. Münchner Geowissenschaftliche Abhandlungen, Reihe A, Geologie und Paläontologie 16:1110.Google Scholar
Marcus, L. F. 1993. Some aspects of multivariate statistics for morphometrics. pp. 95130In Marcus, L. F., Bello, E. and Garcia-Valdecasas, A., eds. Contributions to Morphometrics. Museo Nacional de Ciencas Naturales, Madrid.CrossRefGoogle Scholar
Michaux, J. 1982. Aspects de l'évolution des Murinés (Rodentia, Mammalia) en Europe sud-occidentale. Colloques internationaux du CNRS, Paris 330:195199.Google Scholar
Misonne, X. 1969. African and Indo-European Muridae; evolutionary trends. Musée Royal de l'Afrique centrale, Tervuren Belgique. Annales, série in-8, Sciences Zoologiques.Google Scholar
Nevo, E. 1989. Natural selection of body size differentiation in spiny mice, Acomys. Zeitschrift für Säugetierekunde 54:8199.Google Scholar
Rohlf, F. J. 1993. NTSYS-pc; numerical taxonomy and multivariate analysis system; version 1.80. Exeter Software, Setauket, N.Y.Google Scholar
Rohlf, F. J., and Archie, J. W. 1984. A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera: Culicidae). Systematic Zoology 33:302317.CrossRefGoogle Scholar
Rohlf, F. J., and Marcus, L. F. 1993. A revolution in morphometrics. Trends in Ecology and Evolution 8:129132.CrossRefGoogle Scholar
Schaub, S. 1938. Tertiäre und Quartäre Murinae. Abhandlungen der Schweizerischen Paleontologischen Gesellschaft, Basel 61:139.Google Scholar
Whiting, M. F., and Wheeler, W. C. 1994. Insect homeotic transformation. Nature 368:696.CrossRefGoogle Scholar