Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T02:18:25.214Z Has data issue: false hasContentIssue false

Fossils, homology, and “Phylogenetic Paleo-ontogeny”: a reassessment of primary posterior plate homologies among fossil and living crinoids with insights from developmental biology

Published online by Cambridge University Press:  05 October 2015

David F. Wright*
Affiliation:
School of Earth Sciences, The Ohio State University, 275 Mendenhall Laboratory, 155 South Oval Mall, Columbus, Ohio 43210, USA. E-mail: [email protected]

Abstract

Paleobiologists must propose a priori hypotheses of homology when conducting a phylogenetic analysis of extinct taxa. The distributions of such “primary” homologies among species are fundamental to phylogeny reconstruction because they reflect a prior belief in what constitutes comparable organismal elements and are the principal determinants of the outcome of phylogenetic analysis. Problems arise when fossil morphology presents seemingly equivocal hypotheses of homology, herein referred to as antinomies. In groups where homology recognition has been elusive, such as echinoderms, these problems are commonly accompanied by the presence (and persistence) of poor descriptive terminology in taxonomic literature that confounds an understanding of characters and stymy phylogenetic research. This paper combines fossil morphology, phylogenetic systematics, and insights from evolutionary developmental biology to outline a research program in Phylogenetic Paleo-ontogeny. A “paleo” ontogenetic approach to character analysis provides a logical basis for homology recognition and discerning patterns of character evolution in a phylogenetic context. To illustrate the utility of the paleo-ontogenetic approach, I present a reassessment of historically contentious plate homologies for “pan-cladid” crinoids (Cladida, Flexibilia, Articulata). Developmental patterns in living crinoids were combined with the fossil record of pan-cladid morphologies to investigate primary posterior plate homologies. Results suggest the sequence of morphologic transitions unfolding during the ontogeny of extant crinoids are developmental relics of their Paleozoic precursors. Developmental genetic modules controlling posterior plate development in pan-cladid crinoids have likely experienced considerable constraint for over 250 million years and limited morphologic diversity in the complexity of calyx characters. Future phylogenetic analyses of pan-cladids are recommended to consider the presence of a single plate in the posterior region homologous with the radianal, rather than the anal X, as is commonly assumed.

Type
Articles
Copyright
Copyright © 2015 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abzhanov, A. 2013. von Baer’s law for the ages: lost and found principles of developmental evolution. Trends in Genetics 29:712722.CrossRefGoogle ScholarPubMed
Alroy, J. 2010. Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53:12111235.CrossRefGoogle Scholar
Amemiya, S. A. Omori, Tsurugaya, T., Hibino, T., Yamaguchi, M., Kuraishi, R., Kiyomoto, M., and Minokawa, T.. 2014. Early stalked stages in ontogeny of the living isocrinid sea lily Metacrinus rotundus. Acta Zoologica. doi: 10.1111/azo.12109.Google Scholar
Arnone, M. I., and Davidson, D. H.. 1997. The hardwiring of development: organization and function of genomic regulatory systems. Development 124:18511864.CrossRefGoogle ScholarPubMed
Ausich, W. I. 1996. Crinoid plate circlet homologies. Journal of Paleontology 70:955964.CrossRefGoogle Scholar
Ausich, W. I 1998. Phylogeny of Arenig to Caradoc crinoids (Phylum Echinodermata) and suprageneric classification of the Crinoidea. University of Kansas Paleontological Contributions 9:136.Google Scholar
Ausich, W. I., Kammer, T. W., and Baumiller, T. K.. 1994. Demise of the Middle Paleozoic Crinoid Fauna: a single extinction event or rapid faunal turnover? Paleobiology 20:345361.CrossRefGoogle Scholar
Ausich, W. I., Kammer, T. W., Wright, D. F., Cole, S. R., Peter, M. E. and Rhenberg, E. C.. 2015. Toward a phylogenetic classification of the Crinoidea (Echinodermata). Pp. 29–32 in S. Zamora and I. Rábano, eds. Progress in Echinoderm Paleobiology. Cuadernos del museo Geominero, 19, Instituto Geológico y Minero de España, 292 pp.Google Scholar
Bapst, D. W. 2012. When can clades be potentially resolved with morphology? PLoS One 8:e62312. doi:10.1371/journal.pone.0062312.CrossRefGoogle Scholar
Bapst, D. W 2014. Assessing the effect of time-scaling on phylogeny-based analyses in the fossil record. Paleobiology 40:331351.CrossRefGoogle Scholar
Bateson, W. 1894. Materials for the study of variation. MacMillan, London.Google Scholar
Bather, F. A. 1890. British fossil crinoids: The classification of the Inadunata Fistulata. Annals and Magazine of Natural History 5:373788.CrossRefGoogle Scholar
Bather, F. A 1891. Some alleged cases of misrepresentation. Annals and Magazine of Natural History 6:480489.CrossRefGoogle Scholar
Bather, F. A 1918. The homologies of the anal plate in Atedon. Annals and Magazine of Natural History 9:294302.CrossRefGoogle Scholar
Bolker, J. A., and Raff, R. A.. 1996. Developmental genetics and traditional homology. Bioessays 18:489491.CrossRefGoogle ScholarPubMed
Breimer, A. 1978. General morphology, recent crinoids. Pp. T9T58in R. C. Moore, and C. Teichert, eds. Treatise on Invertebrate Paleontology. Part T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Brigandt, I. 2003. Homology in comparative, molecular, and evolutionary developmental biology: the radiation of a concept. Journal of Experimental Zoology 299b:917.CrossRefGoogle Scholar
Brower, J. C. 1978. Camerates. Pp. T244T263in R. C. Moore, and C. Teichert, eds. Treatise on Invertebrate Paleontology. Part T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Brower, J. C 1995. Dendrocrinid crinoids from the Ordovician of northern Iowa and southern Minnesota. Journal of Paleontology 69:939960.CrossRefGoogle Scholar
Brusca, R. C., and Brusca, G. J.. 2003. Invertebrates, (2nd edition). Sinauer Associates, Sunderland.Google Scholar
Bryant, H. N. 1989. An evaluation of cladistics and character analyses as hypothetico-deductive procedures and the consequences for character weighting. Systematic Biology 38:214227.Google Scholar
Carpenter, P. H. 1882. On the relations of Hybocrinus, Baerocrinus, and Hybocystites. Quarterly Journal of the Geological Society of London 38:298312.CrossRefGoogle Scholar
Carpenter, P. H 1884. Report on the Crinoidea—the stalked crinoids. Report on the scientific results of the H. M. S. Challenger. Zoology 11:1440.Google Scholar
Carpenter, W. B. 1866. Researches on the structure, physiology and development of Antedon (Comatula) rosaceus. Philosophical Transactions of the Royal Society of London 156:671756.Google Scholar
Carroll, S. B. 2008. Evo-Devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:2536.CrossRefGoogle Scholar
Clark, A. H. 1915. A monograph of the existing crinoids. Bulletin of the United States National Museum 32, part 2.Google Scholar
Cohen, K. M., Finney, S. C., Gibbard, P. L., and Fan, J. X.. 2013. The ICS International Chronostratigraphic Chart. Episodes 36:199204.CrossRefGoogle Scholar
Darwin, C. 1859. On the origin of species by means of natural selection. Murray, London.Google Scholar
David, B. B. Lefebvre, Mooi, R., and Parsley, R. L.. 2000. Are homalozoans echinoderms? An answer from extraxial-axial theory. Paleobiology 26:529555.2.0.CO;2>CrossRefGoogle Scholar
Erwin, D. E. 2007. Disparity: morphological pattern and development. Palaeontology 50:5773.CrossRefGoogle Scholar
Erwin, D. E., and Davidson, E. H.. 2009. The evolution of hierarchical gene regulatory networks. Nature Reviews Genetics 10:141148.CrossRefGoogle ScholarPubMed
de Pinna, M. G. G. 1991. Concepts and tests of homology in the cladistics paradigm. Cladistics 7:387394.CrossRefGoogle Scholar
Eldredge, N., and Gould, S. J.. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82115in T. J. M. Schopf, ed. Models in Paleobiology. Freeman, Cooper and Company, San Fransisco.Google Scholar
Foote, M. 1992. Paleozoic record of morphological diversity in blastozoan echinoderms. Proceedings of the National Academy of Sciences 89:73257329.CrossRefGoogle ScholarPubMed
Foote, M 1995. Morphological diversification of Paleozoic crinoids. Paleobiology 21:273299.CrossRefGoogle Scholar
Foote, M 1999. Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology 25:1115.CrossRefGoogle Scholar
Foote, M., and Raup, D. M.. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121140.CrossRefGoogle ScholarPubMed
Gahn, F. J., and Kammer, T. W.. 2002. The cladid crinoid Barycrinus from the Burlington Limestone (early Osagean) and the phylogenetics of Mississippian botryocrinids. Journal of Paleontology 76:123133.2.0.CO;2>CrossRefGoogle Scholar
Garstang, W. 1921. The theory of Recapitulation: a critical re-statement of the biogenic law. Journal of the Linnaean Society of London 35:81101.CrossRefGoogle Scholar
Gilbert, S. F., and Bolker, J. A.. 2001. Homologies of process and modular elements of embryonic construction. Pp. 437456in G. P. Wagner, ed. The Character Concept in Evolutionary Biology. Academic Press, London.Google Scholar
Gould, S. J. 1973. Systematic pluralism and the uses of history. Systematic Zoology 22:322324.CrossRefGoogle Scholar
Gould, S. J 1977. Ontogeny and Phylogeny. Belknap Press of Harvard University Press, Cambridge.Google Scholar
Gould, S. J 1989. Wonderful Life: the Burgess Shale and the nature of history. Norton, New York.Google Scholar
Guensburg, T. E., and Sprinkle, J.. 2009. Solving the mystery of crinoid ancestry: new fossil evidence of arm origin and development. Journal of Paleontology 83:350364.CrossRefGoogle Scholar
Haeckel, E. 1866. Generelle Morphologie der Organismen. Allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie. Georg Reimer, Berlin.CrossRefGoogle Scholar
Hall, B. K. 2002. Palaeontology and evolutionary developmental biology: a science of the nineteenth and twenty-first centuries. Palaeontology 45:647669.CrossRefGoogle Scholar
Hall, B. K 2003. Descent with modification: the unity underlying homology and homoplasy as seen through an analysis of development and evolution. Biology Reviews 78:409433.CrossRefGoogle ScholarPubMed
Hara, Y., Yamaguchi, M., Akasaka, K., Nakano, H., Nonaka, M., and Amemiya, S.. 2006. Expression patterns of Hox genes in larvae of the sea lily Metacrinus rotundus. Development Genes and Evolution 216:797809.CrossRefGoogle ScholarPubMed
Harnik, P. G., Fitzgerald, P. C., Payne, J. L., and Carson, S. J.. 2014. Phylogenetic signal in extinction selectivity in Devonian terebratulide brachiopods. Paleobiology 40:679692.CrossRefGoogle Scholar
Hendricks, J. R., Saupe, E. E., Myers, C. E., Hermsen, E. J., and Allmon, W. D.. 2014. The generification of the fossil record. Paleobiology 40:511528.CrossRefGoogle Scholar
Hennig, W. 1966. Phylogenetic systematics. University of Illinois Press, Urbana.Google Scholar
Hyman, L. 1955. The Invertebrates, Vol. 5. Phylum Echinodermata. McGraw-Hill, New York.Google Scholar
Kammer, T. W. 2008. Paedomorphosis as an adaptive response in pinnulate cladid crinoids from the Burlington Limestone (Mississippian, Osagean) of the Mississippi Valley. Pp. 177195in W. I. Ausich, and G. D. Webster, eds. Echinoderm Paleobiology. University of Indiana Press, Bloomington.Google Scholar
Kammer, T. W., and Ausich, W. I.. 1996. Primitive cladid crinoids from Upper Osagean-Lower Meramecian (Mississippian) rocks of east-central United States. Journal of Paleontology 70:835866.CrossRefGoogle Scholar
Kammer, T. W., and Ausich, W. I.. 2006. The “age of crinoids”: a Mississippian biodiversity spike coincident with widespread carbonate ramps. Palaios 21:238248.CrossRefGoogle Scholar
Kammer, T. W., and Ausich, W. I.. 2007. New cladid and flexible crinoids from the Mississippian (Tournaisian, Ivorian) of England and Wales. Palaeontology 50:10391050.CrossRefGoogle Scholar
Kammer, T. W. C. D. Sumrall, Zamora, S., Ausich, W. I., and Deline, B.. 2013. Oral region homologies in Paleozoic crinoids and other plesiomorphic pentaradial echinoderms. PLoS ONE 8:e77989. doi:10.1371/journal.pone.0077989.CrossRefGoogle ScholarPubMed
Kirk, E. 1944. Cymbiocrinus, a new inaduate crinoid genus from the Upper Mississippian. American Journal of Science 242:233245.CrossRefGoogle Scholar
Lahaye, M. C., and Jangoux, M.. 1987. The skeleton of the stalked stages of the comatulid crinoid Atedon bifida (Echinodermata). Zoomorphology 107:5865.CrossRefGoogle Scholar
Laubichler, M. D. 2000. Homology in development and the development of the homology concept. American Zoologist 40:777788.Google Scholar
Lieberman, B. S. 2000. Paleobiogeography: Using Fossils to Study Global Change, Plate Tectonics, and Evolution. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Mladenov, P. V., and Chia, F. S.. 1983. Development, settling behavior, metamorphosis, and pentacrinoid feeding and growth of the feather star Florometra serratissima. Marine Biology 73:309323.CrossRefGoogle Scholar
Mooi, R. B., David, B., and Marchland, D.. 1994. Echinoderm skeletal homologies: classical morphology meets modern phylogenetics. Pp. 8795in B. David, A. Guille, J. Féral, and M. Roux, eds. Echinoderms Through Time. A. A. Balkema, Rotterdam.Google Scholar
Mooi, R. B., and David, B.. 1997. Skeletal homologies of echinoderms. Pp. 305335in J. A. Waters, and C. G. Maples, eds. Geobiology of Echinoderms. Paleontological Society. Papers 3.Google Scholar
Mooi, R., David, B., and Wray, G. A.. 2005. Arrays in rays: terminal addition in echinoderms and its correlation with gene expression. Evolution and Development 7:542555.CrossRefGoogle ScholarPubMed
Moore, R. C. 1962. Ray structures of some inadunate crinoids. University of Kansas Paleontological Contributions 5:147.Google Scholar
Moore, R. C., and Laudon, L. R. 1943. Evolution and Classification of Paleozoic crinoids. Geological Society of America Special Paper 46:1154.CrossRefGoogle Scholar
Moore, R. C., and Plummer, F. B.. 1940. Crinoids from the Upper Carboniferous and Permian strata in Texas. University of Texas Publication 3945.Google Scholar
Moore, R. C., and Teichert, C.. eds. 1978. Treatise on Invertebrate Paleontology (Part T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence, 1027 p.Google Scholar
Moore, R. C., Lane, N. G., and Strimple, H. L.. 1978. Order Cladida Moore and Laudon. 1943, Pp. 578759in R. C. Moore, and C. Teichert, eds. Treatise on Invertebrate Paleontology (Part T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Mortensen, T. 1920. Studies in the development of crinoids. Papers from the Department of Marine Biology, Carnegie Institution of Washing 16.Google Scholar
Nakano, H., Hibino, T., Oji, T., Hara, Y., and Amemiya, S.. 2003. Larval stages of a living sea lily (stalked crinoid echinoderm). Nature 421:158160.CrossRefGoogle ScholarPubMed
Patterson, C. 1982. Morphological characters and homology. Pp. 2174in K. A. Joysey, and A. E. Friday, eds. Problems of Phylogenetic Reconstruction. Academic Press, New York.Google Scholar
Paul, C. R. C., and Smith, A. B.. 1984. The early radiation and phylogeny of echinoderms. Biological Reviews 59:443481.CrossRefGoogle Scholar
Philip, G. M. 1964. Australian fossil crinoids. I, Introduction and terminology for the anal plates of crinoids. Proceedings of the Linnaean Society of New South Wales 88:259272.Google Scholar
Purvis, A. 2008. Phylogenetic approaches to the study of extinction. Annual Review of Ecology, Evolution, and Systematics 39:301319.CrossRefGoogle Scholar
Rabosky, D. L., and McCune, A. R.. 2010. Reinventing species selection with molecular phylogenies. Trends in Ecology and Evolution 25:6874.CrossRefGoogle ScholarPubMed
Raff, R. A. 2007. Written in stone: fossils, genes, and evo-devo. Nature Reviews Genetics 8:911920.CrossRefGoogle ScholarPubMed
Rasmussen, H. W. 1978. Evolution of articulate crinoids. Pp T302T316in R. C. Moore, and C. Teichert, eds. Treatise on Invertebrate Paleontology Part T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Remane, A. 1952. Die Grundlagen des Naturlichen Systems der Vergleichenden Anatomie und der Phylogenetik. Geest und Portig, Leipzig.Google Scholar
Rouse, G. W., Jermiin, L. S., Wilson, N. G., Eeckhaut, I., Lanterbecq, D., Oji, T., Young, C. M., Browning, T., Cisternas, P., Helgen, L. E., Stuckey, M., and Messing, C. G.. 2013. Fixed, free, and fixed: the fickle phylogeny of extant Crinoidea (Echinodermata) and their Permian–Triassic origin. Molecular Phylogenetics and Evolution 66:161181.CrossRefGoogle ScholarPubMed
Roux, M. M. Eleaume, Hemery, L. G., and Ameziane, N.. 2013. When morphology meets molecular data in crinoid phylogeny: a challenge. Cahiers de Biologie Marine 54:541548.Google Scholar
Rozhnov, S. V., and Mirantsev, G. V.. 2014. Structural aberrations in the cup in cladid crinoids from the Carboniferous of the Moscow region. Paleontological Journal 48:12431257.CrossRefGoogle Scholar
Saint-Hilaire, E. G. 1830. Principes de Philosophie Zoologique, discutés en Mars 1830, au Sein de l’Académie Royale des Sciences. Pichon et Dider, Paris.Google Scholar
Sereno, P. C. 2007. Logical basis for morphological characters in phylogenetics. Cladistics 23:565587.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.CrossRefGoogle Scholar
Shibata, T. F. A. Sato, Oji, T., and Akasaka, K.. 2008. Development and growth of the feather star Oxyamanthus japonicas to sexual maturity. Zoological Science 25:10751083.CrossRefGoogle Scholar
Shubin, N. H., and Marshall, C. R.. 2000. Fossils, genes, and the origin of novelty. Paleobiology 26:324340.CrossRefGoogle Scholar
Simms, M. J. 1993. Reinterpretation of thecal plate homology and phylogeny in the Class Crinoidea. Lethaia 26:303312.CrossRefGoogle Scholar
Simms, M. J., and Sevastopulo, G. D.. 1993. The origin of articulate crinoids. Palaeontology 36:91109.Google Scholar
Smith, A. B. 2001. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society, London 356:351368.CrossRefGoogle ScholarPubMed
Springer, F. 1920. The Crinoidea Flexibilia. Smithsonian Institution, Publication 2501.Google Scholar
Sprinkle, J., and Guensburg, T. E.. 1997. Early radiation of echinoderms. Pp. 205224in J. A. Waters, and C. G. Maples, eds. Geobiology of Echinoderms. Paleontological Society. Papers 3.Google Scholar
Sprinkle, J., and Kier, P. M.Phylum Echinodermata. 1987. Pp. 550611in R. S. Boardman, A. H. Cheetham, and A. J. Rowell, eds. Fossil Invertebrates. Blackwell Scientific, Palo Alto.Google Scholar
Sprinkle, J., and Wahlman, G. P.. 1994. New echinoderms from the Early Ordovician of West Texas. Journal of Paleontology 68:324338.CrossRefGoogle Scholar
Strimple, H. L. 1948. Notes on Phanocrinus from the Fayetteville Formation of Northeastern Oklahoma. Journal of Paleontology 22:490493.Google Scholar
Strimple, H. L 1978. Evolutionary trends among Poteriocrinina. Pp. T298T301in R. C. Moore, and C. Teichert, eds. Treatise on Invertebrate Paleontology (Part T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Sumrall, C. D. 1997. The role of fossil in the phylogenetic reconstruction of Echinodermata. Pp. 267288in J. A. Waters, and C. G. Maples, eds. Geobiology of Echinoderms. Paleontological Society. Papers 3.Google Scholar
Sumrall, C. D 2008. The origin of Lovén’s Law in glyptocystitoid rhombiferans and its bearing on the plate homology and the heterochronic evolution of the hemicosmitid peristomal border. Pp. 228241in W. I. Ausich, and G. D. Webster, eds. Echinoderm Paleobiology. University of Indiana Press, Bloomington.Google Scholar
Sumrall, C. D 2010. A model for elemental homology for the peristome and ambulacra in blastozoan echinoderms. Pp. 269276in L. G. Harris, S. A. Böttger, C. W. Walker, and M. P. Lesser, eds. Echinoderms: Durham. Taylor and Francis Group, London, UK.Google Scholar
Sumrall, C. D., and Waters, J. A.. 2012. Universal elemental homology in glyptocystitoids, hemicosmitoids, coronoids and blastoids: steps toward echinoderm phylogenetic reconstruction in derived blastozoa. Journal of Paleontology 86:956972.CrossRefGoogle Scholar
Thomson, W. C. 1865. On the embryogeny of Antedon rosaceus (Lmk) (Comatula rosacea of Lamark). Philosophical Transactions of the Royal Society of London 155:513545.Google Scholar
Ubaghs, G. 1953. Classe des crinoides. In J. Piveteau, ed. Traité de Paléontologie 3:658773.Google Scholar
Ubaghs, G 1978. Skeletal morphology of fossil crinoids. T58T216in R. C. Moore, and C. Teirchert, eds. Treatise on invertebrate paleontology. Part T, Echinodermata 2. Crinoidea, Geological Society of America, Boulder and University of Kansas Press, Lawrence.Google Scholar
van Valen, L. M. 1982. Homology and causes. Journal of Morphology 173:305312.CrossRefGoogle ScholarPubMed
von Baer, K. E. 1828. Uber Entwickelungsgeschichte der Thiere: Beobachtung und Reflektion, Bornträger.CrossRefGoogle Scholar
Wagner, G. P. 2006. Homologues, natural kinds and the evolution of modularity. American Zoologist 36:3643.CrossRefGoogle Scholar
Wagner, G. P 2007. The developmental genetics of homology. Nature Reviews Genetics 8:473479.CrossRefGoogle ScholarPubMed
Wagner, P. J. 1995. Testing evolutionary constraint hypotheses with Early Paleozoic gastropods. Paleobiology 21:248272.CrossRefGoogle Scholar
Wagner, P. J 2000a. Phylogenetic analyses and the fossil record: tests, inferences, hypotheses, and models. Paleobiology 26:341371.CrossRefGoogle Scholar
Wagner, P. J 2000b. Exhaustion of morphologic character states among fossil taxa. Evolution 54:365386.Google ScholarPubMed
Walker, L. J., Wilkinson, B. H., and Ivany, L. C.. 2002. Continental drift and Phanerozoic carbonate accumulation in shallow-shelf and deep-marine settings. The Journal of Geology 110:7587.CrossRefGoogle Scholar
Wanner, J. 1916. Dei Permischen echinodermen von Timor, I. Teil. Paläeontology von Timor 11:1329.Google Scholar
Wheeler, W. C. 2012. Systematics: a course of lectures. John Wiley and Sons. 426 pp.CrossRefGoogle Scholar
Wiley, E. O. 1975. Karl R. Popper, systematics and classification: a reply to Walter Bock and other evolutionary taxonomists. Systematic Zoology 24:233243.CrossRefGoogle Scholar
Wiley, E. O., and Lieberman, B. S.. 2011. Phylogenetics: theory and practice of phylogenetic systematics. John Wiley and Sons.CrossRefGoogle Scholar
Webster, G. D., and Jell, P. A.. 1999. New Permian crinoids from Australia. Memoirs of the Queensland Museum 33:349359.Google Scholar
Webster, G. D., and Lane, N. G.. 1967. Additional Permian crinoids from southern Nevada. University of Kansas Paleontological Contributions 27:132.Google Scholar
Webster, G. D., and Maples, C. G.. 2006. Cladid crinoid (Echinodermata) anal conditions: a terminology problem and proposed solution. Palaeontology 49:187212.CrossRefGoogle Scholar
Wright, A. M., and Hillis, D. M.. 2014. Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data. PLoS ONE 9:e109210. doi:10.1371/journal.pone.0109210.CrossRefGoogle ScholarPubMed
Wright, D. F., and Ausich, A. I.. 2015. From the stem to the crown: phylogeny and diversification of pan-cladid crinoids. Pp. 199–202 in S. Zamora and I. Rábano, eds. Progress in Echinoderm Paleobiology. Cuadernos del museo Geominero, 19, Instituto Geológico y Minero de España, 292 pp.Google Scholar
Wright, D. F., and Stigall, A. L.. 2014. Geologic drivers of Late Ordovician faunal change in Laurentia: investigating links between tectonic, speciation, and biotic invasions. PLoS ONE 8:e68353. doi:10.1371/journal.pone.0068353.CrossRefGoogle Scholar
Wright, J. 1920. On Carboniferous crinoids from Fife; with notes on some localities, and provisional lists of species. Transactions of the Geological Society of Glasgow 16:363392.CrossRefGoogle Scholar
Wright, J 1926. Notes on the anal plates of Epachycrinus calyx and Zeacrinus konincki. Geological Magazine 64:352373.Google Scholar
Wright, J 1927. Some variations in Ulocrinus and Hydreionocrinus. Geological Magazine 71:241268.CrossRefGoogle Scholar
Zamora, S., Rahman, I. A., and Smith, A. B.. 2012. Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. PLoS One 7:e38296. doi:10.1371/journal.pone.0038296.CrossRefGoogle ScholarPubMed
Zamora, S., and Rahman, I. A.. 2014. Deciphering the early evolution of echinoderms with Cambrian fossils. Palaeontology 57:11051119.CrossRefGoogle Scholar