Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T21:41:28.349Z Has data issue: false hasContentIssue false

The flourishing diversity of models in theoretical morphology: from current practices to future macroevolutionary and bioenvironmental challenges

Published online by Cambridge University Press:  08 April 2016

Guillaume Dera
Affiliation:
CNRS Biogéosciences, Université de Bourgogne, 6 boulevard Gabriel, F-21000, Dijon, France. E-mail: [email protected]; [email protected]; [email protected], [email protected]
Gunther J. Eble
Affiliation:
CNRS Biogéosciences, Université de Bourgogne, 6 boulevard Gabriel, F-21000, Dijon, France. E-mail: [email protected]; [email protected]; [email protected], [email protected]
Pascal Neige
Affiliation:
CNRS Biogéosciences, Université de Bourgogne, 6 boulevard Gabriel, F-21000, Dijon, France. E-mail: [email protected]; [email protected]; [email protected], [email protected]
Bruno David
Affiliation:
CNRS Biogéosciences, Université de Bourgogne, 6 boulevard Gabriel, F-21000, Dijon, France. E-mail: [email protected]; [email protected]; [email protected], [email protected]

Abstract

For decades, theoretical morphological studies of different groups of organisms have been successfully pursued in biological, paleontological, and computational contexts, often with distinct modeling approaches and research questions. A regular influx of new perspectives and varied expertise has contributed to the emergence of a veritable multidisciplinary outlook for theoretical morphology. The broadening of this discipline is reflected in a substantial increase in the number of models, leading to a bewildering diversity that has yet to be scrutinized. In this work, we tackle this issue in a synthetic fashion, with a quantitative meta-analysis that allows an objective comparison of theoretical morphological models treated as entities. By analogy with empirical morphospace analyses of actual organisms, we performed a multivariate ordination of a representative sample of models, producing a metaspace of models in which patterns of similarity and difference are visualized. A phenetic tree was used to characterize the relationships between models. Four major groups have been identified, and their disparity analyzed. We suggest this typology as a useful starting point to identify a core set of fundamental principles and protocols for better interpretation of the plethora of current models and for more efficient construction of models in the future. This in turn can help in diversifying the scope of macroevolutionary, developmental, and bioenvironmental questions in theoretical morphology.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ackerly, S. C. 1989. Kinematics of accretionary shell growth, with the examples from brachiopods and molluscs. Paleobiology 15:147164.Google Scholar
Ackerly, S. C. 1992. Morphogenetic regulation in the shells of bivalved organisms: evidence from the geometry of the spiral. Lethaia 25:249256.Google Scholar
Aono, M., and Kunii, T. L. 1984. Botanical tree image generation. IEEE Computer Graphics and Application 4:134.CrossRefGoogle Scholar
Batchelor, M. T., Burne, R. V., Henry, B. I., and Jackson, M. J. 2005a. A case for biotic morphogenesis of coniform stromatolites. Physica A 337:319326.Google Scholar
Batchelor, M. T., Burne, R. V., Henry, B. I., and Slatyer, T. 2005b. Statistical physics and stromatolite growth: new perspectives on an ancient dilemma. Physica A 350:611.Google Scholar
Beck, M., Benko, G., Eble, G. J., Flamm, C., Müller, S., and Stadler, P. F. 2004. Graph grammars as models for the evolution of developmental pathways. Pp. 815 in Brüggerman, U., Schaub, H., and Detje, F., eds. The logic of artificial life: abstracting and synthesizing the principles of living systems. Proceedings of GWAL 2004, IOS Press, Bamberg, Germany.Google Scholar
Bell, A. D. 1986. The simulation of branching patterns in modular organisms. Philosophical Transactions of the Royal Society of London B 313:143159.Google Scholar
Berger, W. H. 1969. Planktonic foraminifera: basic morphology and ecological implications. Journal of Paleontology 43:13691383.Google Scholar
Bookstein, F. L. 1991. Morphometric tools for landmark data geometry and biology. Cambridge University Press, New York.Google Scholar
Brasier, M. D. 1980. Microfossils. Allen and Unwin, London.Google Scholar
Cheetman, A. H., and Hayek, L. C. 1983. Geometric consequences of branching growth in adeoniform Bryozoa. Paleobiology 9:240260.Google Scholar
Cheetman, A. H., Hayek, L. C., and Thomsen, E. 1980. Branching structure in arborescent animals: models of relative growth. Journal of Theoretical Biology 85:335369.Google Scholar
Coen, E., Rolland-Lagan, A.-G., Matthews, M., Bangham, A., and Prusinkiewicz, P. 2004. The genetics of geometry. Proceedings of the National Academy of Sciences USA 101:47284735.CrossRefGoogle ScholarPubMed
Cortie, M. B. 1989. Models for mollusc shape. South African Journal of Science 85:454460.Google Scholar
D'Arcy Thompson, W. 1917. On growth and forms. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
De Renzi, M. 1988. Shell coiling in some larger foraminifera: general comments and problems. Paleobiology 14:387400.CrossRefGoogle Scholar
De Renzi, M. 1995. Theoretical morphology of logistic coiling exemplified by tests of genus Alveolina (larger foraminifera). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 195:241251.Google Scholar
Dommergues, J.-L., Laurin, B., and Meister, C. 1996. Evolution of ammonoid morphospace during the Early Jurassic radiation. Paleobiology 22:219240.Google Scholar
Dupraz, C., Pattisina, R., and Verrecchia, E. P. 2006. Translation of energy into morphology: simulation of stromatolite morphospace using a stochastic model. Sedimentary Geology 185:185203.Google Scholar
Eble, G. J. 2000. Theoretical morphology: state of the art. Paleobiology 26:520528.2.0.CO;2>CrossRefGoogle Scholar
Eble, G. J. 2002. Developmental morphospace and evolution. Pp. 3565 in Crutchfield, J. P. and Schuster, P., eds. Evolutionary dynamics. Oxford University Press, Oxford.Google Scholar
Eckartne, S. U. K., and Crisp, D. J. 1983. A geometrical analysis of growth in gastropod shells, with particular reference to turbinate forms. Journal of the Marine Biological Association of the United Kingdom 63:777797.Google Scholar
Erwin, D. H. 2007. Disparity: morphological pattern and developmental context. Paleontology 50:5773.Google Scholar
Felsenstein, J. 1990. PHYLIP (Phylogeny inferences package), Version 3.3. University of Washington, Seattle.Google Scholar
Ferreira Junior, S. C., Martins, M. L., and Vilela, M. J. 2002. A reaction-diffusion model for the growth of avascular tumor. Physical Review E 65:21907.Google Scholar
Fortey, R. A. 1983. Geometrical constraints in the construction of graptolite stipes. Paleobiology 13:116125.Google Scholar
Fortey, R. A., and Bell, A. 1987. Branching geometry and function of multiramous graptoloids. Paleobiology 13:119.Google Scholar
Fowler, D. R., Meinhardt, H., and Prusinkiewicz, P. 1992. Modeling seashells. Computer Graphics 26:379387.Google Scholar
Gardiner, A. R., and Taylor, P. D. 1980. Computer modelling of colony growth in a uniserial bryozoan. Journal of Geological Society, London 137:107.Google Scholar
Gardiner, A. R. 1982. Computer modelling of branching growth in the bryozoan Stromatopora . Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 163:389416.Google Scholar
Gerber, S., Eble, G. J., and Neige, P. 2007. Combining ontogenetic and evolutionary scales of morphological disparity: a study of early Jurassic ammonites. Evolution and Development 9:472482.Google Scholar
Glass, G. V. 1976. Primary, secondary, and meta-analysis. Educational Researcher 5:38.Google Scholar
Gould, S. J., and Katz, M. 1975. Distribution of ideal geometry in the growth of receptaculitids: a natural experiment in theoretical morphology. Paleobiology 1:120.Google Scholar
Graus, R. R., and Macintyre, I. G. 1976. Light control of growth form in colonial reef corals: computer simulation. Science 193:895897.CrossRefGoogle ScholarPubMed
Harary, F. 1969. Graph theory. Addison Wesley, Reading, Mass. Google Scholar
Harbaugh, J. W., and Bonham-Carter, G. 1970. Computer simulation in geology. Wiley, New York.Google Scholar
Hickman, C. S. 1993. Theoretical design space: a new program for the analysis of structural diversity. In Seilacher, A. and Chinzei, K., eds. Progress in constructional morphology. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 190:169182.Google Scholar
Hofmann, H. J. 1994. Quantitative stromatology. Journal of Paleontology 68:704709.Google Scholar
Honda, H. 1971. Description of the form of trees by the parameters of the tree-like body: effects of the branching angle and the branch length on the shape of the tree-like body. Journal of Theoretical Biology 31:331338.Google Scholar
Honda, H., and Fisher, J. B. 1978. Tree branch angle: maximizing effective leaf area. Science 199:888890.Google Scholar
Hull, D. 1988. Science as a process. University of Chicago Press, Chicago.Google Scholar
Hutchinson, J. M. C. 1990. Control of gastropod shell form via apertural growth rates. Journal of Morphology 206:259264.Google Scholar
Hutchinson, J. M. C. 1999. But which morphospace to choose? Trends in Ecology and Evolution 14:414.Google Scholar
Illert, C. 1982. The mathematics of gnomic seashells. Mathematical Bioscience 63:2156.Google Scholar
Hutchinson, J. M. C. 1989. Formulation and solution of the classical seashell problem. II Nuovo Cimento D 11:761780.Google Scholar
Kaandorp, J. A. 1995. Analysis and synthesis of radiate accretive growth in three dimensions. Journal of Theoretical Biology 175:3955.Google Scholar
Kaandorp, J. A. 1996. Effect of nutrient diffusion and flow on coral morphology. Physical Review Letters 77:23282331.Google Scholar
Kaandorp, J. A. 2001. The algorithmic beauty of seaweeds, sponges and corals. Springer, Heidelberg.Google Scholar
Kaandorp, J. A., and Garcia Leiva, R. 2004. Morphological analysis of two- and three-dimensional images of branching sponges and corals. Pp. 8394 in Elena, A. M. T., ed. Morphometrics: applications in biology and paleontology. Springer, Berlin.Google Scholar
Kaandorp, J. A., and Sloot, P. M. A. 1997. Parallel simulation of accretive growth and form in three dimensions. BioSystems 44:181192.Google Scholar
Kaandorp, J. A. 2001. Morphological models of radiate accretive growth and the influence of hydrodynamics. Journal of Theoretical Biology 209:257274.Google Scholar
Kershaw, S., and Riding, R. 1978. Parameterization of stromatoporoid shape. Lethaia 11:233242.Google Scholar
Kohn, A. J., and Riggs, A. C. 1975. Morphometry of the Conus shell. Systematic Zoology 24:346359.CrossRefGoogle Scholar
Kozlovsky, Y., Cohen, I., Golding, I., and Ben-Jacob, E. 1999. Lubricating bacteria model for branching growth of bacterial colonies. Physical Review E 59:70257035.Google Scholar
Kruszynski, K. J., Van Liere, R., and Kaandorp, J. A. 2006. An interactive visualization system for quantifying coral structures. Pp. 18 in Ertl, T., Joy, K., and Santos, B., eds. Eurographics/IEEE-VGTC Symposium on visualization, Benidorm, Spain, January 2006.Google Scholar
Łabaj, P., Topa, P., Tyszka, J., and Alda, W. 2003. 2D and 3D numerical models of the growth of foraminiferal shell. Lecture Notes in Computer Science 2657:669678.Google Scholar
Lefebvre, B., Eble, G. J., Navarro, N., and David, B. 2006. Diversification of atypical Paleozoic echinoderms: a quantitative survey of patterns of stylophoran disparity, diversity, and geography. Paleobiology 32:483510.Google Scholar
Løvtrup, S., and Løvtrup, M. 1988. The morphogenesis of molluscan shells: a mathematical account using biological parameters. Journal of Morphology 197:5362.Google Scholar
Løvtrup, S., and Von Sydow, B. 1974. D'Arcy Thompson's theorems and the shape of the molluscan shell. Bulletin of Mathematical Biology 38:567575.Google Scholar
McCartney, K., and Loper, D. E. 1989. Optimized skeletal morphologies of silicoflagellate genera Dictyocha and Distephanus . Paleobiology 15:283298.Google Scholar
McGhee, G. R. Jr. 1978. Analysis of shell torsion phenomenon in Bivalvia. Lethaia 11:315329.Google Scholar
McGhee, G. R. Jr. 1980. Shell form in the biconvex articulate Brachiopoda: a geometric analysis. Paleobiology 6:5776.Google Scholar
McGhee, G. R. Jr. 1991. Theoretical morphology: the concept and its applications. In Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Short Course in Paleontology 4:87102. Paleontological Society, Knoxville, Tenn. Google Scholar
McGhee, G. R. Jr. 1999. Theoretical morphology: the concept and its applications (Perspectives in Paleobiology and Earth History Series). Columbia University Press, New York.Google Scholar
McGhee, G. R. Jr. 2001. Exploring the spectrum of existent, nonexistent, and impossible biological form. Trends in Ecology and Evolution 16:172173.Google Scholar
McGhee, G. R. Jr. 2007. The geometry of evolution: adaptative landscapes and theoretical morphospaces. Cambridge University Press, Cambridge.Google Scholar
McKinney, F. K., and Raup, D. M. 1982. A turn in the right direction: simulation of erect spiral growth in the bryozoans Archimedes and Bugula . Paleobiology 8:101112.Google Scholar
Meinhardt, H. 1995. The algorithmic beauty of sea shells. Springer, Berlin.Google Scholar
Merks, R. M. H., Hoekstra, A. G., Kaandorp, J. A., and Sloot, P. M. A. 2003. Models of coral growth: spontaneous branching, compactification and the Laplacian growth assumption. Journal of Theoretical Biology 224:153166.Google Scholar
Merks, R. M. H. 2004. Polyp oriented modelling of coral growth. Journal of Theoretical Biology 228:559576.Google Scholar
Moseley, H. 1838. On the geometrical forms of turbinated and discoid shells. Philosophical Transactions of the Royal Society of London for 1838:351370.Google Scholar
Navarro, N. 2003. MDA: a MATLAB-based program for morphospace-disparity analysis. Computers and Geosciences 29:655664.Google Scholar
Neige, P. 2003. Spatial patterns of disparity and diversity of the recent cuttlefishes (Cephalopoda) across the Old World. Journal of Biogeography 30:11251137.Google Scholar
Niklas, K. J. 2004. Computer models of early land plant evolution. Annual Review of Earth and Planetary Sciences 32: 467–66.Google Scholar
Niklas, K. J., and Kerchner, V. 1984. Mechanical and photosynthetic constraints on the evolution of plant shape. Paleobiology 10:79101.Google Scholar
Okamoto, T. 1984. Theoretical morphology of Nipponites (a heteromorph ammonoid). Kaseki (fossils). Palaeontological Society of Japan 36:3751. [In Japanese.]Google Scholar
Okamoto, T. 1988. Analysis of heteromorph ammonoids by differential geometry. Palaeontology 31:3552.Google Scholar
Papentin, F., and Röder, H. 1975. Feeding patterns: the evolution of a problem and a problem of evolution. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1975:184191.Google Scholar
Parkinson, J., Brechet, Y., and Gordon, R. 1999. Centric diatom morphogenesis: a model based on a DLA algorithm investigating the potential role of microtubules. Biochimica et Biophysica Acta 1452:89102.Google Scholar
Plotnick, R. E. 2002. Ecological and L-system based simulations of trace fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 192:4558.Google Scholar
Prusinkiewicz, P. 1986. Graphical applications of L-systems. Proceedings of Graphics Interface 86:247253.Google Scholar
Prusinkiewicz, P. 1993. Modeling and visualization of biological structures. Proceeding of Graphics Interface 93:128137.Google Scholar
Prusinkiewicz, P. 1998. Modeling of spatial structure and development of plants: a review. Scientia Horticulturae 74:113149.Google Scholar
Prusinkiewicz, P. 2004. Modeling plant growth and development. Current Opinion in Plant Biology 7:7983.Google Scholar
Prusinkiewicz, P., and Lindenmayer, A. 1996. The algorithmic beauty of plants (2d printing.). Springer, Berlin.Google Scholar
Rasskin-Gutman, D. 2003. Boundary constraints for the emergence of form. Pp. 305322 in Müller, G. and Newman, S., eds. Origination of organismal form. MIT Press, Cambridge.Google Scholar
Rasskin-Gutman, D., and Buscalioni, A. D. 1996. Affine transformation as a model of virtual form change for generating morphospaces. In Marcus, L. F., Corti, M., Loy, A., Naylor, G. J. P., and Slice, D., eds. 1996. Advances in morphometrics. NATO ASI Series A 284:169178. Plenum, New York.Google Scholar
Rasskin-Gutman, D. 2001. Theoretical morphology of the Archosaur (Reptilia: Diapsida) pelvic girdle. Paleobiology 27:5978.Google Scholar
Rasskin-Gutman, D., and Izpisúa-Belmonte, J-. C. 2004. Theoretical morphology of developmental asymmetries. Bioessays 26:405412.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Raup, D. M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology 41:4365.Google Scholar
Raup, D. M. 1968. Theoretical morphology of echinoid growth. Journal of Paleontology 42:5063.Google Scholar
Raup, D. M. 1969. Modeling and simulation of morphology by computer. Proceedings of the North American Paleontological Convention, Part B:7183.Google Scholar
Raup, D. M. 1972. Approaches to morphologic analysis. Pp. 2844 in Schopf, T. J. M., eds. Models in paleobiology. Freeman, Cooper, San Francisco.Google Scholar
Raup, D. M. 1987. Neutral models in paleobiology. Pp. 121132 in Nitecki, M. H. and Hoffman, A., eds. Neutral models in biology. Oxford University Press, Oxford.Google Scholar
Raup, D. M., and Michelson, A. 1965. Theoretical morphology of the coiled shell. Science 147:12941295.Google Scholar
Raup, D. M., and Seilacher, A. 1969. Fossil foraging behavior: computer simulation. Science 166:994995.Google Scholar
Reif, W.-E., and Weishampel, D. B. 1991. Theoretical morphology, an annotated bibliography 1960–1990. Courier Forschungsinstitut Senckenberg 142:1140.Google Scholar
Rice, S. H. 1998. The bio-geometry of mollusc shells. Paleobiology 24:133149.Google Scholar
Roy, K. and Foote, M. 1997. Morphological approaches to measuring biodiversity. Trends in Ecology and Evolution 12:277281.Google Scholar
Saunders, W. B., and Swan, A. R. H. 1984. Morphology and morphospace diversity of mid-Carboniferous (Namurian) ammonoids in time and space. Paleobiology 10:195228.Google Scholar
Saunders, W. B., Work, D. M., and Nikolaeva, S. 2004. The evolutionary history of shell geometry in Paleozoic ammonoids. Paleobiology 30:1943.Google Scholar
Savazzi, E. 1987. Geometric and functional constraints on bivalve shell morphology. Lethaia 20:293306.Google Scholar
Savazzi, E. 1990. Biological aspects of theoretical shell morphology. Lethaia 23:195212.Google Scholar
Schindel, D. E. 1990. Unoccupied morphospace and the coiled geometry of gastropods: architectural constraint or geometric covariation. Pp. 270304 in Ross, R. M. and Allmon, W. M., eds. Causes of evolution: a paleontological perspective. University of Chicago Press, Chicago.Google Scholar
Signes, M., Bijma, J., Hemleben, C., and Ott, R. 1993. A model for planktic foraminiferal shell growth. Paleobiology 19:7191.Google Scholar
Starcher, R. W., and McGhee, G. R. Jr. 2000. Fenestrate theoretical morphology: geometric constraints on lophophore shape and arrangement in extinct Bryozoa. Paleobiology 26:116136.Google Scholar
Starcher, R. W. 2003. Fenestrate graptolite theoretical morphology: geometric constraints on lophophore shape and arrangement in extinct Hemichordates. Journal of Paleontology 77:360367.Google Scholar
Stolarski, J., Roniewicz, E., and Grycuk, T. 2004. A model for furcate septal increase in a Triassic scleractiniamorph. Acta Palaeontologica Polonica 49:529542.Google Scholar
Stone, J. R. 1995. Cerioshell: a computer program designed to simulate variation in shell form. Paleobiology 21:509519.Google Scholar
Stone, J. R. 1996. The evolution of ideas: a phylogeny of shell models. American Naturalist 148:904929.Google Scholar
Stone, J. R. 1997. The spirit of D'Arcy Thompson dwells in empirical morphospaces. Mathematical Biosciences 142:1330.Google Scholar
Sumner, R. W. 2001. Pattern formation in lichen. . Massachusetts Institute of Technology, Cambridge.Google Scholar
Swan, A. R. H. 1999. Computer models of fossils morphology. Pp. 157179 in Harper, D. A. T., ed. Numerical paleobiology. Wiley, Chichester, U.K. Google Scholar
Swan, A. R. H. 2003. Occupation of Morphospace. Pp. 157161 in Briggs, D. E. G. and Crowther, P. R., eds. Palaeobiology II. Blackwell Science, Oxford.Google Scholar
Swan, A. R. H., and Kershaw, S. 1994. A computer model for skeletal growth of stromatoporoids. Palaeontology 37:409423.Google Scholar
Swan, A. R. H., and Saunders, W. B. 1987. Function and shape in late Paleozoic (mid-Carboniferous) ammonoids. Paleobiology 13:297311.Google Scholar
Thomas, R. D. K., and Reif, W.-E. 1993. The skeleton space: a finite set of organic designs. Evolution 47:341360.Google Scholar
Thomas, R. D., Shearman, R. M., and Stewart, G. W. 2000. Evolutionary exploitation of design options by the first animals with hard skeletons. Science 288:12391242.Google Scholar
Turing, A. M. 1952. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London B 237:3772.Google Scholar
Tyszka, J., and Topa, P. 2005. A new approach to modeling of foraminiferal shells. Paleobiology 31:526541.Google Scholar
Tyszka, J., Topa, P., and Saczka, K. 2005. State-of-the-art in modelling of foraminiferal shells: searching for an emergent model. Studia Geologica Polonica 124:143157.Google Scholar
Ubukata, T. 2000. Theoretical morphology of hinge and shell form in Bivalvia: geometric constraints derived from space conflict between umbones. Paleobiology 26:606624.Google Scholar
Ubukata, T. 2003a. A theoretical morphologic analysis of bivalve ligaments. Paleobiology 29:369380.Google Scholar
Ubukata, T. 2003b. Pattern of growth rate around aperture and shell form in Bivalvia: a theoretical morphological study. Paleobiology 29:480491.Google Scholar
Ubukata, T. 2005. Theoretical morphology of bivalve shell sculptures. Paleobiology 31:643655.Google Scholar
Usami, Y. 2006. Theoretical study on the body form and swimming pattern of Anomalocaris based on hydrodynamic simulation. Journal of Theoretical Biology 238:1117.Google Scholar
Vermeij, G. J. 1971. Gastropod evolution and morphological diversity in relation to shell geometry. Journal of Zoology 163:1523.Google Scholar
Ward, P. 1980. Comparative shell shape distributions in Jurassic-Cretaceous ammonites and Jurassic-Tertiary nautilids. Paleobiology 6:3243.Google Scholar
Waters, J. A. 1977. Quantification of shape by use of Fourier analysis: the Mississippian blastoid genus Pentremites . Paleobiology 3:288299.Google Scholar
Webb, L. P., and Swan, A. R. H. 1996. Estimation of parameters of foraminiferal test geometry by image analysis. Palaeontology 39:471475.Google Scholar