Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T22:51:19.836Z Has data issue: false hasContentIssue false

Floral diversity, phytogeography, and climatic amelioration during the Early Carboniferous (Dinantian)

Published online by Cambridge University Press:  08 February 2016

Anne Raymond*
Affiliation:
Department of Geology, Texas A&M University, College Station, Texas 77843

Abstract

Phytogeographic analysis of three Early Carboniferous intervals (Tournaisian–early Visean, Visean, and late Visean–early Namurian A) indicates a high level of phytogeographic differentiation in the beginning of the Early Carboniferous that decreases toward the end of this period. Climatic amelioration (warmer or wetter conditions) in the north middle and high latitudes, caused by the collision of Laurussia and Gondwana at the end of the Early Carboniferous, may be responsible for this decrease in phytogeographic provinciality. Toward the end of the Early Carboniferous, a large number of equatorial genera expand their ranges northward, and the average generic diversity of assemblages in the north high latitudes (Siberia) also rises. Both support the hypothesis of climatic amelioration. Northward migration of equatorial forms and the appearance of new genera endemic to Siberia both contributed to the rise in Siberian diversity. Although this trend is not statistically significant, additional evidence of diversity increase in northern high latitudes tied to climatic amelioration comes from the northernmost limit of diverse (≥ 10 genera) assemblages, which rises from 20°N at the beginning to 55°N at the end of the Early Carboniferous. Global plant diversity assessed at the generic level remained constant during the Early Carboniferous. The increase in Siberian diversity was offset by a decrease in equatorial diversity, perhaps due to the loss of pronounced latitudinal climatic gradients between north-middle and equatorial latitudes.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andrews, H. N., Gensel, P. G., and Forbes, W. H. 1974. An apparently heterosporous plant from the Middle Devonian of New Brunswick. Palaeontology. 17:387408.Google Scholar
Ananiev, V. A. et al. 1979. Biostratigraphy of the Lower Carboniferous of Central Siberia. 9th Int. Congress of Carboniferous Stratigr. Geol. (Abst.), p. 4.Google Scholar
Archangelsky, S. 1971. Las tafofloras del sistema Paganzo en la Republica Argentina. An. Acad. Brasil. Cienc. 43(Suplemento):6788.Google Scholar
Archangelsky, S. 1983. Nothorhacopteris, a new generic name for some Carboniferous monopinnate fronds of Gondwanaland (= Rhacopteris ovata auct. and Pseudorhacopteris, Rigby, 1973). Rev. Palaeobot. Palynol. 38:157172.CrossRefGoogle Scholar
Arnold, C. A. and Sadlick, W. 1962. A Mississippian flora from northeastern Utah and its faunal and stratigraphic relations. Contr. Univ. Michigan Mus. Paleontol. 17:241261.Google Scholar
Asama, K. 1973. Lower Carboniferous Kuantan Flora, Pahang, West Malaysia. Geol. Palaeontol. Southeast Asia. 11:109118.Google Scholar
Asama, K., Hongnusonthi, A., Iwai, J., and Kon'no, E., Rajah, S. S., and Veeraburas, M. 1975. Summary of the Carboniferous and Permian plants from Thailand, Malaysia and adjacent areas. Geol. Palaeontol. Southeast Asia. 150:77101.Google Scholar
Beck, C. B. 1970. The appearance of gymnospermous structure. Biol. Rev. 45:379400.CrossRefGoogle Scholar
Bell, W. A. 1948. Early Carboniferous strata of St. Georges Bay Area, Newfoundland. Can. Geol. Surv. Paper 10:145.Google Scholar
Bell, W. A. 1960. Mississippian Horton Group of type Windsor Horton District, Nova Scotia. Mem. Geol. Surv. Can. 314:1112.Google Scholar
Benson, R. H. 1976. In search of lost oceans: a paradox in discovery. Pp. 379390. In: Grey, J. and Boucot, A. J., eds. Historical Biogeography, Plate Tectonics, and the Changing Environment. Oregon State Univ. Press; Corvallis, Oregon.Google Scholar
Bouroz, A., Einor, O. L., Gordon, M., Meyen, S. V., and Wagner, R. H. 1978. Proposals for an International Chronostratigraphic Classification of the Carboniferous. C. R. 8th Intern. Congr. Carb. Strat. Geol. (Moscow 1975) 1:3669.Google Scholar
Bureau, M. E. 1914. Bassin de la Basse Loire, Etudes des Gîtes Minéraux de la France, Ministére des traveaux publics. Vol. 2, fasc. 2, Pp. 1417.Google Scholar
Campbell, R. C. 1974. Statistics for Biologists. 385 pp. 2d ed. Cambridge Univ. Press; Cambridge.Google Scholar
Chaloner, W. G. and Lacey, W. S. 1973. The distribution of Late Paleozoic floras. Pp. 271289. In: Hughes, N. F., ed. Organisms and Continents through Time. Paleont. Assoc. Spec. Pap. 12; London.Google Scholar
Chaloner, W. G. and Meyen, S. V. 1973. Carboniferous and Permian floras of the northern continents. Pp. 169186. In: Hallam, A., ed. Atlas of Paleobiogeography. Elsevier Scientific Publishing Co.; Amsterdam.Google Scholar
Cheetham, A. H. and Hazel, J. E. 1969. Binary (presence-absence) similarity coefficients. J. Paleontol. 43:11301136.Google Scholar
Crowell, J. C. and Frakes, L. A. 1975. The Late Paleozoic Glaciation. Pp. 313331. In: Campbell, K. S. W., ed. Gondwana Geology, Papers Presented at the Third Gondwana Symposium Canberra, Australia, 1973. Australian National Univ. Press; Canberra.Google Scholar
Daber, R. 1959. Die Mittel-Visé-Flora der Tiefbohrungen von Doberlug-Kirchain. Geologie. 26:349.Google Scholar
Daber, R. 1972. Abbildungen und Beschreibungen unterkarbonischer Pflanzenreste aus der Mongolischen Volksrepublik. Paläontol. Abh. Abt. B. Paläobot. Band 3, Heft 5:867885.Google Scholar
Danźe-Corsin, P. 1960. Sur les flores Viséennes du Maroc. Bull. Soc. Geol. Fr. 7:590599.CrossRefGoogle Scholar
Bao, Deng. 1978. On the discovery of Early Carboniferous flora from Shanyang, S. Shanxi and its stratigraphic significance. Acta Geol. Sin. 1:1520.Google Scholar
Durante, M. V. 1976. The Carboniferous and Permian Stratigraphy of Mongolia on the Basis of Paleobotanical Data: Transactions Joint Soviet-Mongolian Science Research Expedition, v. 19, 172 p. NAUKA; Moscow.Google Scholar
Feehan, J. 1979. Plants from the Upper Old Red Sandstone of Slieve Bloom, County Offaly, Eire. Geol. Mag. 116:403404.CrossRefGoogle Scholar
Frakes, L. A. and Crowell, J. C. 1969. Late Paleozoic Glaciation. I. South America. Geol. Soc. Am. Bull. 80:10071042.CrossRefGoogle Scholar
Gorlova, S. G. 1978. The flora and stratigraphy of the coal-bearing Carboniferous of Middle Siberia. Palaeontographica. (Abt. B) 165:5377.Google Scholar
Gothan, W. and Sahni, B. 1937. Fossil plants from the Po Series of Spitti (N.W. Himalayas). Rec. Geol. Surv. India. 72:195206.Google Scholar
Hirmer, M. 1940. Die Pflanzen des Karbon und Perm und ihre Stratigraphische Bedeutung. Palaeontographica. (Abt. B.) 84:45102.Google Scholar
H⊘eg, O.A., Bose, M. N., and Shukla, B. N. 1955. Some fossil plants from the Po Series of Spiti (N.W. Himalayas). Paleobotanist. 4:1013.Google Scholar
Howie, R. D. 1979. Carboniferous evaporites in Atlantic Canada. 9th Int. Cong. Carboniferous Stratigr. Geol. (Abst.), Pp. 9394.Google Scholar
Howie, R. D. and Barss, M. S. 1975. Paleogeography and sedimentation in the Upper Paleozoic, Eastern Canada. In: Yorath, C. J., Parker, E. R., and Glass, D. J., eds. Canada's Continental Margins. Can. Soc. Petrol. Geol. Mem. 4:4557.Google Scholar
Jongmans, W. J. 1952. Some problems on Carboniferous stratigraphy. Troisième Congrés de Stratigraphie et de Géologie du Carbonifère, Heerlen, 1951. Compte rendu. 1:295306.Google Scholar
Jongmans, W. J. 1954. The Carboniferous flora of Peru. Bull. Geol. Brit. Mus. Nat. Hist. 2:191223.Google Scholar
Jongmans, W. J. and Van der Heides, S. 1955. Flore et faune du Carbonifère inférieur de l'Egypte. Meded. van de geol. Sticht., N.S. 8:5975.Google Scholar
Kaiser, H. 1974. Die Mikrofloren und Makrofloren des Oberdevon und Untercarbon der Baren Bareninsel (Ursandsteinformation). Pp. 9697. In: Naumova, S. N., ed. Palynology of Proterophyte and Palaeophyte. Proc. 3d Int. Palynol. Conf. NAUKA; Moscow.Google Scholar
Knoll, A. H., Niklas, K. J., and Tiffney, B. H. 1979. Phanerozoic land plant diversity in North America. Science. 206:14001402.CrossRefGoogle ScholarPubMed
Kotasowa, A. 1977. Palaeobotanical evidence for the boundary between the Lower and Upper Carboniferous in the Upper Silesian Coal Basin. Pp. 429431. In: Holub, V. M. and Wagner, R. H., eds. Symposium on Carboniferous Stratigraphy. Geol. Surv.; Prague.Google Scholar
Krasilov, V. A. 1975. Paleoecology of Terrestrial Plants, Basic Principles and Techniques. 283 pp. Halsted Press; New York.Google Scholar
Lacey, W. S. 1952. Additions to the Millstone Grit flora of Lancashire. Troisième Congrés de Stratigraphie et de Géologie du Carbonifère, Heerlen, 1951. Compte rendu. 2:379383.Google Scholar
Lacy, W. S. 1962. Welch Lower Carboniferoous plants. I. The flora of the Lower Brown Limestone in the Vale of Clwd, North Wales. Palaeontographica. 111B:126160.Google Scholar
Lacey, W. S. and Eggert, D. A. 1964. A flora from the Chester Series (Upper Mississippian) of southern Illinois. Am. J. Bot. 51:975985.CrossRefGoogle Scholar
Mensah, M. K. and Chaloner, W. G. 1971. Lower Carboniferous lycopods from Ghana. Palaeontology. 14:357369.Google Scholar
Meyen, S. V. 1976. Carboniferous and Permian Lepidophytes of Angaraland. Paleontogr. Abt. 157B:112157.Google Scholar
Meyen, S. V. 1982. The Carboniferous and Permian floras of Angaraland (a synthesis). Biol. Mem. 7:1110.Google Scholar
Niklas, K. J., Tiffney, B. H., and Knoll, A. J. 1983. Patterns in vascular land plant diversification. Nature. 303:614616.CrossRefGoogle Scholar
Novik, E. O. 1952. The Carboniferous flora of the European portion of the U.S.S.R. Paleontol. USSR, N.S. 1.Google Scholar
Oshurkova, M. W. 1978. Paleophytocoenocenesis as the basis of a detailed stratigraphy with special reference to the Carboniferous of the Karaganda Basin. Rev. Palaeobot. Palynol. 25:181187.CrossRefGoogle Scholar
Pal, A. K. and Chaloner, W. G. 1979. A Lower Carboniferous Lepidodendropsia flora in Kashmir. Nature 281:295297.CrossRefGoogle Scholar
Pfefferkorn, H. W. 1979. High diversity and stratigraphic age of the Mazon Creek flora. Pp. 129142. In: Nitecki, M. H., ed. Mazon Creek Fossils. Academic Press; New York.CrossRefGoogle Scholar
Purkyňová, E. 1977. Namurian flora of the Moravian part of the Upper Silesian Coal Basin. Pp. 289297. In: Holub, V. M. and Wagner, R. H., eds. Symposium on Carboniferous Stratigraphy. Geol. Surv.; Prague.Google Scholar
Radchenko, M. V. 1967. Kamennougol'naia flora Iugo-Vostochnogo Kazakhstana. 72 pp. NAUKA; Moscow.Google Scholar
Raymond, A., Parker, W. C., and Parrish, J. T. 1985. Phytogeography and paleoclimate of the Early Carboniferous. In: Tiffney, B., ed. Geologic Factors and the Evolution of Plants. Yale Univ. Press; New Haven.Google Scholar
Read, C. B. 1941. Plantas Fóssels do Neo-Paleozóico do Paraná E Santa Catarina. Ministerio da Agricultura, Departmento Nacional da Produção Mineral, Divisão de Geologia E Mineralogia Monografia 12:196.Google Scholar
Rigby, J. F. 1969. A reevaluation of the Pre-Gondwana Carboniferous flora. An. Acad. brail. Cienc. 41:393413.Google Scholar
Rigby, J. F. 1973. Gondwanidium and other similar Upper Paleozoic genera, and their stratigraphic significance. Geol. Surv. Queensland Pub. No. 350, Palaeontol. Pap. No. 24:110.Google Scholar
Rigby, J. F. 1979. Aspects concerning the identification and distribution of Late Paleozoic plants in Gondwanaland. Geophytology. 9:2838.Google Scholar
Ross, C. A. and Ross, J. R. P. 1984. Carboniferous and Early Permian biogeography. Geology. 13:2730.2.0.CO;2>CrossRefGoogle Scholar
Ross, J. R. P. 1981. Biogeography of Carboniferous Ectoproct Bryozoa. Palaeontology. 24:313341.Google Scholar
Rowley, D. B., Raymond, A., Parrish, J. T., Lottes, A. L., Scotese, C. R., and Ziegler, A. M. 1985. Carboniferous paleogeographic, phytogeographic and paleoclimatic reconstructions. Int. J. Coal Geol. 5:742.CrossRefGoogle Scholar
Schopf, T. J. M. 1976. The role of biogeographic provinces in regulating marine faunal diversity through geologic time. Pp. 449457. In: Gray, J. and Boucot, A. J., eds. Historical Biogeography, Plate Tectonics and the Changing Environment. Proc. 37th Ann. Biol. Colloquium. Oregon State Univ. Press; Corvallis.Google Scholar
Scotese, C. R., Bambach, R. K., Carton, C., Van der Voo, R., and Ziegler, A. M. 1979. Paleozoic Base Maps. J. Geol. 87:217277.CrossRefGoogle Scholar
Scott, A. C. 1979. The distribution of Lower Carboniferous floras in northern Britain. 9th Int. Congr. Carboniferous Stratigr. Geol. (Abst.), Pp. 198199.Google Scholar
Smith, A. G., Hurley, A. M., and Briden, J. C. 1981. Phanerozoic Paleocontinental World Maps. 102 pp. Cambridge Earth Science Series, Cambridge Univ. Press; Cambridge.Google Scholar
Sneath, P. H. A. and Sokal, R. R. 1973. Numerical Taxonomy. 573 pp. W. H. Freeman; San Francisco.Google Scholar
Spicer, R. A. 1980. The importance of depositional sorting to the biostratigraphy of plant megafossils. Pp. 171184. In: Dilcher, D. L. and Taylor, T. N., eds. Biostratigraphy of Fossil Plants. Dowden, Hutchinson & Ross; Stroudsburg, Pa.Google Scholar
Sullivan, H. J. 1967. Regional differences in Mississippian spore assemblages. Rev. Palaeobot. Palynol. 1:185192.CrossRefGoogle Scholar
Sveshnikova, I. N. and Budantsev, L. Y. 1969. Florulae Fossils Arcticae. 121 pp. Nauka Fillia Leningradensis; Leningrad.Google Scholar
Tchirkova, H. 1937. Contribution nouvelle à la flore Carbonifère inférieure du versant oriental de l'Oural. In: Hartmann-Weinberg, A., Kretschetovitsch, L. M., and Kusmin, T. M., eds. Problems of Paleontology. Publ. Lab. Paleontol. Moscow Univ. 2:207231.Google Scholar
Van der Zwan, C. J. 1981. Palynology, phytogeography and climate of the Lower Carboniferous. Palaeogeogr. Palaeoclimatol. Palaeoecol. 33:279310.CrossRefGoogle Scholar
Vakhrameev, V. A., Dobruskina, I. A., Zaklinskaja, E. D., and Meyen, S. V. 1970. Paleozoic and Mesozoic floras of Eurasia and phytogeography of this time. 426 pp. Nauka; Moscow.Google Scholar
Vinogradov, A. P., ed. 1968. Atlas of the lithological-paleogeographical maps of the U.S.S.R. Vol. 1. Min. Geol. U.S.S.R. Acad. Sci. U.S.S.R.; Moscow.Google Scholar
Walter, H. 1983. Vegetation of the Earth in Relation to Climate and Eco-physiological Conditions. 237 pp. Heidelberg Science Library vol. 15. Springer-Verlag; Berlin.Google Scholar
White, D. 1937. Fossil Flora of the Wedington Sandstone member of the Fayetteville Shale. U.S.G.S. Professional Paper 186-B:1340.CrossRefGoogle Scholar
Jing-zhi, Yang, Wang-shi, Wu, Lin-xin, Zhang, and Zhuo-ting, Liao. 1979. Advances in the Carboniferous biostratigraphy of China. Nanjing Inst. Geol. Palaeontol., Acad. Sin. Nanjing, China. 7 pp.Google Scholar
Xiu-hu, Zhao and Xiu-yuan, Wu. 1979. Carboniferous macrofloras of south China. Nanjing Inst. Geol. Palaeontol. Acad. Sin., Nanjing, China. 8 p.Google Scholar
Ziegler, A. M., Bambach, R. K., Parris, J. T., Barrett, S. F., Gierlowski, E. H., Parker, W. C., Raymond, A., and Sepkoski, J. J. Jr. 1981. Paleozoic biogeography and climatology. Pp. 231266. In: Niklas, K. J., ed. Paleobotany, Paleoecology, and Evolution. Vol. 2. Praeger; New York.Google Scholar