Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T16:15:53.274Z Has data issue: false hasContentIssue false

A factor analytic description of the Phanerozoic marine fossil record

Published online by Cambridge University Press:  08 February 2016

J. John Sepkoski Jr.*
Affiliation:
Department of the Geophysical Sciences, University of Chicago, 5734 S. Ellis Ave., Chicago, Illinois 60637

Abstract

Data on numbers of marine families within 91 metazoan classes known from the Phanerozoic fossil record are analyzed. The distribution of the 2800 fossil families among the classes is very uneven, with most belonging to a small minority of classes. Similarly, the stratigraphic distribution of the classes is very uneven, with most first appearing early in the Paleozoic and with many of the smaller classes becoming extinct before the end of that era. However, despite this unevenness, a Q-mode factor analysis indicates that the structure of these data is rather simple. Only three factors are needed to account for more than 90% of the data. These factors are interpreted as reflecting the three great “evolutionary faunas” of the Phanerozoic marine record: a trilobite-dominated Cambrian fauna, a brachiopod-dominated later Paleozoic fauna, and a mollusc-dominated Mesozoic-Cenozoic, or “modern,” fauna. Lesser factors relate to slow taxonomic turnover within the major faunas through time and to unique aspects of particular taxa and times.

Each of the three major faunas seems to have its own characteristic diversity so that its expansion or contraction appears as being intimately associated with a particular phase in the history of total marine diversity. The Cambrian fauna expands rapidly during the Early Cambrian radiations and maintains dominance during the Middle to Late Cambrian “equilibrium.” The Paleozoic fauna then ascends to dominance during the Ordovician radiations, which increase diversity dramatically; this new fauna then maintains dominance throughout the long interval of apparent equilibrium that lasts until the end of the Paleozoic Era. The modern fauna, which slowly increases in importance during the Paleozoic Era, quickly rises to dominance with the Late Permian extinctions and maintains that status during the general rise in diversity to the apparent maximum in the Neogene. The increase in diversity associated with the expansion of each new fauna appears to coincide with an approximately exponential decline of the previously dominant fauna, suggesting possible displacement of each evolutionary fauna by its successor.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, S. 1974. Patterns of faunal evolution. Q. Rev. Biol. 49: 311332.CrossRefGoogle ScholarPubMed
Anderson, S. and Anderson, C. S. 1975. Three Monte Carlo models of faunal evolution. Am. Mus. Novit. 2563: 16.Google Scholar
Balsam, W. L. and Vogel, S. 1973. Water movement in archaeocyathids: Evidence and implications of passive flow in models. J. Paleontol. 47: 979984.Google Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology. 3: 152167.CrossRefGoogle Scholar
Boucot, A. J. 1975. Evolution and Extinction Rate Controls. 427 pp. Elsevier; Amsterdam.Google Scholar
Brown, M. B., ed. 1977. BMDP-77. Biomedical Computer Programs P-Series. 880 pp. Univ. Calif. Press; Berkeley, Calif.Google Scholar
Conway Morris, S. 1977. Fossil priapulid worms. Palaeontol. Assoc. London, Spec. Pap. Palaeontol. No. 20. 95 pp.Google Scholar
Cutbill, J. L. and Funnell, B. M. 1967. Computer analysis of The Fossil Record. pp. 791820. In: Harland, W. B., et al., eds. The Fossil Record. Geol. Soc. London; London.Google Scholar
Eldredge, N. and Cracraft, J. 1980. Phylogenetic Patterns and the Evolutionary Process. 349 pp. Columbia Univ. Press; New York.Google Scholar
Flessa, K. and Imbrie, J. 1973. Evolutionary pulsations: Evidence from Phanerozoic diversity patterns. pp. 247285. In: Tarling, D. H. and Runcorn, S. K., eds. Implications of Continental Drift to the Earth Sciences. Academic Press; London.Google Scholar
Flessa, K. and Levinton, J. S. 1975. Phanerozoic diversity patterns: Tests for randomness. J. Geol. 83: 239248.CrossRefGoogle Scholar
Glaessner, M. F. 1976. Early Phanerozoic annelid worms and their geological and biological significance. J. Geol. Soc. London. 132: 259275.CrossRefGoogle Scholar
Glaessner, M. F. 1979. Precambrian. Pp.A79–A118. In: Robison, R. A. and C. Teichert, eds. Treatise on Invertebrate Paleontology, Pt. A. Geol. Soc. Am. and Univ. Kansas Press; Lawrence, Kansas.Google Scholar
Gould, S. J. 1980. Is a new and general theory of evolution emerging? Paleobiology. 6: 119130.CrossRefGoogle Scholar
Gould, S. J., Raup, D. M., Sepkoski, J. J. Jr., Schopf, T. J. M., and Simberloff, D. S. 1977. The shape of evolution: A comparison of real and random clades. Paleobiology. 3: 2340.CrossRefGoogle Scholar
Harland, W. B., et al., eds. 1967. The Fossil Record. 828 pp. Geol. Soc. London, London.Google Scholar
Hill, D. 1972. Archaeocyatha. Pp.E1–E158. In: Teichert, C., ed. Treatise on Invertebrate Paleontology, Pt. E, v. 1. Geol. Soc. Am. and Univ. Kansas Press; Lawrence, Kansas.Google Scholar
Imbrie, J. 1963. Factor and vector analysis programs for analyzing geologic data. Tech. Rep. No. 6, ONR Task No. 389–135. 83 pp.Google Scholar
Jöreskog, K. G., Klovan, J. E., and Reyment, R. A. 1976. Geological Factor Analysis. 178 pp. Elsevier; Amsterdam.Google Scholar
Kier, P. M. 1973. The echinoderms and Permian-Triassic time. pp. 622629. In: Logan, A. and Hills, L. V., eds. The Permian and Triassic Systems and their Mutual Boundary. Can. Soc. Petrol. Geol., Calgary, Alberta.Google Scholar
Klovan, J. E. 1975. R- and Q-mode factor analysis. pp. 2161. In: McCammon, R. B., ed. Concepts in Geostatistics. Springer-Verlag; New York.CrossRefGoogle Scholar
Klovan, J. E. and Imbrie, J. 1971. An algorithm and FORTRAN-IV program for large-scale Q-mode factor analysis and calculation of factor scores. Math. Geol. 3: 6177.CrossRefGoogle Scholar
Linn, R. L. 1968. A Monte Carlo approach to the number of factors problem. Psychometrika. 33: 3771.CrossRefGoogle Scholar
Mather, P. M. 1976. Computational Methods of Multivariate Analysis in Physical Geography. 532 pp. Wiley; New York.Google Scholar
Meyer, D. L. and Macurda, D. B. 1977. Adaptive radiation of the comatulid crinoids. Paleobiology. 3: 7482.CrossRefGoogle Scholar
Moore, R. C. and Teichert, C., eds. 1953–1979. Treatise on Invertebrate Paleontology. Geol. Soc. Am. and Univ. Kansas Press; Lawrence, Kansas.Google Scholar
Nakazawa, K. and Runnegar, B. 1973. The Permian-Triassic Boundary: A crisis for bivalves? Pp. 608621. In: Logan, A. and Hills, L. V., eds. The Permian and Triassic Systems and Their Mutual Boundary. Can. Soc. Petrol. Geol.; Calgary, Alberta.Google Scholar
Newell, N. D. 1952. Periodicity in invertebrate evolution. J. Paleontol. 26: 371385.Google Scholar
Newell, N. D. 1967. Revolutions in the history of life. pp. 6391. In: Albritton, C. C. Jr., ed. Uniformity and Simplicity: A Symposium on the Principle of the Uniformity of Nature. Geol. Soc. Am. Spec. Pap. 89.Google Scholar
Nitecki, M. H. and Debrenne, F. 1979. The nature of radiocyathids and their relationship to receptaculitids and archaeocyathids. Geobios. 12: 527.CrossRefGoogle Scholar
Öpik, A. A. 1975. Cymbric Vale fauna of New South Wales and Early Cambrian biostratigraphy. Aust. Bur. Mineral Res., Geol. and Geophy., Bull. 159. 74 pp.Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science. 177: 10651071.CrossRefGoogle ScholarPubMed
Raup, D. M. 1976. Species diversity in the Phanerozoic: A tabulation. Paleobiology. 2: 279288.CrossRefGoogle Scholar
Raup, D. M. 1978a. Approaches to the extinction problem. J. Paleontol. 52: 517523.Google Scholar
Raup, D. M. 1978b. Cohort analysis of generic survivorship. Paleobiology. 4: 115.CrossRefGoogle Scholar
Raup, D. M. 1979a. Biases in the fossil record of species and genera. Bull. Carnegie Mus. Nat. Hist. No. 13. pp. 8591.Google Scholar
Raup, D. M. 1979b. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science. 206: 217218.CrossRefGoogle ScholarPubMed
Rhodes, F. H. T. 1967. Permo-Triassic extinction. pp. 5776. In: Harland, W. B., et al., eds. The Fossil Record. Geol. Soc. London; London.Google Scholar
Romer, A. S. 1966. Vertebrate Paleontology, 3rd ed. 468 pp. Univ. Chicago Press; Chicago.Google Scholar
Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity: I. Analysis of marine orders. Paleobiology. 4: 223251.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1979. A kinetic model of Phanerozoic taxonomic diversity: II. Early Phanerozoic families and multiple equilibria. Paleobiology. 5: 222251.Google Scholar
Simpson, G. G. 1953. The Major Features of Evolution. 434 pp. Columbia Univ. Press; New York.CrossRefGoogle Scholar
Simpson, G. G. 1960. The history of life. pp. 117180. In: Tax, S., ed. Evolution after Darwin. Vol. I. The Evolution of Life. Univ. Chicago Press; Chicago.Google Scholar
Smith, C. A. F. III. 1977. Diversity associations as stochastic variables. Paleobiology. 3: 4148.CrossRefGoogle Scholar
Sokolov, B. S. 1976. Precambrian Metazoa and the Wendian-Cambrian Boundary. Paleontol. J. 10: 113.Google Scholar
Stanley, S. M. 1977. Trends, rates, and patterns of evolution in the Bivalvia. pp. 209250. In: Hallam, A., ed. Patterns of Evolution. Elsevier; Amsterdam.Google Scholar
Stanley, S. M. 1979. Macroevolution: Pattern and Process. 332 pp. Freeman; San Francisco.Google Scholar
Thayer, C. W. 1979. Biological bulldozers and the evolution of marine benthic communities. Science. 203: 458461.CrossRefGoogle ScholarPubMed
Valentine, J. W. 1968. The evolution of ecological units above the population level. J. Paleontol. 42: 253267.Google Scholar
Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology. 12: 684709.Google Scholar
Valentine, J. W. 1973. Evolutionary Paleoecology of the Marine Biosphere. 511 pp. Prentice-Hall; Englewood Cliffs, N.J.Google Scholar
Valentine, J. W. 1977. General patterns of metazoan evolution. pp. 2757. In: Hallam, A., ed. Patterns of Evolution. Elsevier; Amsterdam.Google Scholar
Van Valen, L. 1973. Are categories in different phyla comparable? Taxon. 22: 333373.CrossRefGoogle Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: Evidence from snails, predators and grazers. Paleobiology. 3: 245258.CrossRefGoogle Scholar
Vogel, S. 1978. Organisms that capture currents. Sci. Am. 239: 128139.CrossRefGoogle Scholar
Zhuravleva, I. T. and Miagkova, E. I. 1972. Archaeta—novaja grupa organizmov Paleozoja. pp. 714. In: Paleontologija Miezdunarod Geol. Kongress XXIV, Sessija. Nauka; Moscow.Google Scholar