Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T21:41:17.504Z Has data issue: false hasContentIssue false

Evolving paleontological views on deterministic and stochastic approaches

Published online by Cambridge University Press:  08 February 2016

Thomas J. M. Schopf*
Affiliation:
Department of the Geophysical Sciences, and Committee on Evolutionary Biology, University of Chicago, Chicago, Ill. 60637

Abstract

Experienced workers in a field are unlikely to change their assessment of basic philosophical issues. Einstein for example never accepted the indeterminacy required by the Heisenberg uncertainty principle, despite the urgings of Max Born and virtually all others. Similarly even earlier, some older workers had refused to accept the young Einstein's theories. Now if issues in physics are not open and shut, they are even less so in paleontology. Possibly it is useful to probe the underlying basic philosophical background to our discipline. The purpose of the present article is to indicate that the inductive, deterministic approaches which have been used almost exclusively in paleontology have stringent limitations. For some types of problems, deductive stochastic processes are more interesting. If we can make the distinction of ‘few’ versus ‘many,’ then it is quite easy to consider deterministic explanations for the individual cases (the movement of individual molecules) but to reserve stochastic explanations for the ensembles of events (the movement of molecules too numerous to count).

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, S. 1974. Patterns of faunal evolution. Q. Rev. Biol. 49:311332.CrossRefGoogle ScholarPubMed
Anderson, S. and Anderson, C. S. 1975. Three Monte Carlo models of faunal evolution. Am. Mus. Novit. 2563:16.Google Scholar
Avise, J. C. 1974. Systematic value of electrophoretic data. Syst. Zool. 23:465481.CrossRefGoogle Scholar
Boardman, R. S. and Utgaard, J. 1964. Modifications of study method for Paleozoic Bryozoa. J. Paleontol. 38:768770.Google Scholar
Bohm, D. 1977. Heisenberg's contributions to physics. Pp. 559563. In: Price, W. C. and Chissick, S. S., eds. The Uncertainty Principle and Foundations of Quantum Mechanics, a Fifty Years' Survey. John Wiley & Sons; London.Google Scholar
Bonner, J. T. 1965. Size and Cycle. 219 pp. Princeton Univ. Press; Princeton, New Jersey.CrossRefGoogle Scholar
Brecher, K. 1979. Albert Einstein: 14 March, 1879-18 April, 1955, A guide for the perplexed. Nature. 278:215218.CrossRefGoogle Scholar
Buge, E. 1972. Remarques sur les méthodes d'utilization strati-graphique des Bryozoaires postpaléozoiques. Mémoire Bureau de Recherches Geólogie et Mineralogie France. 77:5558.Google Scholar
Butterfield, H. 1931. The Whig Interpretation of History. (Penguin Paperback, 1973, 95 pp.)Google Scholar
Carson, H. L. and Kaneshiro, K. Y. 1976. Drosophila of Hawaii: systematics and ecological genetics. Annu. Rev. Ecol. and Syst. 7:311345.CrossRefGoogle Scholar
Connell, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science. 199:13021310.CrossRefGoogle ScholarPubMed
Fisher, D. C. 1977. Functional significance of spines in the Pennsylvanian horseshoe crab Euproops danae. Paleobiology. 3:175195.CrossRefGoogle Scholar
FitzGerald, F. 1979. Onward and upward with the arts: rewriting American history. New Yorker. February 26 (pp. 4177), March 5 (pp. 40–91), March 12 (pp. 48-106).Google Scholar
Flessa, K. W. and Imbrie, J. 1973. Evolutionary pulsations: evidence from Phanerozoic diversity patterns. Pp. 247285. In: Tarling, D. H. and Runcorn, S. K., eds. Implications of Continental Drift to the Earth Sciences. Vol. 1. Academic Press; London.Google Scholar
Foin, T. C., Valentine, J. W., and Ayala, F. J. 1975. Extinction of taxa and Van Valen's law. Nature. 257:514516.CrossRefGoogle ScholarPubMed
Gould, S. J. 1978. Generality and uniqueness in the history of life: an exploration with random models. BioScience. 28:277281.CrossRefGoogle Scholar
Gould, S. J., Raup, D. M., Sepkoski, J. J. Jr., Schopf, T. J. M., and Simberloff, D. S. 1977. The shape of evolution: a comparison of real and random clades. Paleobiology. 3:2340.CrossRefGoogle Scholar
Hubbell, S. P. 1979. Tree dispersion, abundance, and diversity in a tropical dry forest. Science. 203:12991309.CrossRefGoogle Scholar
Hull, D. L. 1979. In defense of presentism. History and Theory. 18:115.CrossRefGoogle Scholar
Kimura, M. and Ohta, T. 1974. On some principles governing molecular evolution. Proc. Nat. Acad. Sci. (U.S.A.). 71:28482852.CrossRefGoogle ScholarPubMed
Knipe, H. R. 1912. Evolution in the Past. 242 pp. Herbert and Daniel; London.Google Scholar
Lillie, R. S. 1932. The directive influence in living organisms. J. Philos. 29:477491.CrossRefGoogle Scholar
May, R. M. 1978. The evolution of ecological systems. Sci. Am. 239:160175.CrossRefGoogle Scholar
Mertz, D. B., Cawthon, D. A., and Park, T. 1976. An experimental analysis of competitive indeterminacy in Tribolium. Proc. Nat. Acad. Sci. (U.S.A.). 73:13681372.CrossRefGoogle ScholarPubMed
Osman, R. W. and Whitlatch, R. B. 1978. Patterns of species diversity: fact or artifact? Paleobiology. 4:4154.CrossRefGoogle Scholar
Popper, K. R. 1945. The Poverty of Historicism. (Book form published 1957. 166 pp. Routledge & Kegan Paul; London.)Google Scholar
Potter, R. V. 1979. Bryozoan karyotypes and genome sizes. In: Larwood, G., ed. Bryozoa, 1978. Academic Press; New York. In press.Google Scholar
Raup, D. M. 1975. Taxonomic survivorship curves and Van Valen's Law. Paleobiology. 1:8296.CrossRefGoogle Scholar
Raup, D. M. 1977a. Probabilistic models in evolutionary paleobiology. Am. Sci. 65:5057.Google ScholarPubMed
Raup, D. M. 1977b. Stochastic models in evolutionary paleontology. Pp. 5978. In: Patterns of Evolution. Hallam, A., ed. Elsevier; New York.Google Scholar
Raup, D. M. 1978. Approaches to the extinction problem. J. Paleontol. 52:517523.Google Scholar
Raup, D. M. 1979. Conflicts between Darwin and paleontology. Field Mus. Nat. Hist. Bull. 50:2229.Google Scholar
Raup, D. M. and Gould, S. J. 1974. Stochastic simulation and evolution of morphology—towards a nomothetic paleontology. Syst. Zool. 23:305322.CrossRefGoogle Scholar
Raup, D. M. and Schopf, T. J. M. 1978. Stochastic models in paleontology: a primer. Notes for a workshop “Species as Particles in Space and Time.” 124 pp. Held at Smithsonian Institution.Google Scholar
Raup, D. M., Gould, S. J., Schopf, T. J. M., and Simberloff, D. S. 1973. Stochastic models of phylogeny and the evolution of diversity. J. Geol. 81:525542.CrossRefGoogle Scholar
Schopf, J. W. 1974. The development and diversification of Precambrian life. Origins of life. 5:119135.CrossRefGoogle ScholarPubMed
Schopf, T. J. M. 1971. An approach to understanding evolutionary relationships in the Phylum Ectoprocta. Pp. 19. In: Meyerson, A. L. and Zois, C. S., eds. Papers in Marine Science: The Link Lecture Series. Contribution No. 1. New Jersey Marine Sciences Consortium, Upper Montclair, New Jersey.Google Scholar
Schopf, T. J. M. 1974a. Permo-Triassic extinctions: relation to sea-floor spreading. J. Geol. 82:129143.CrossRefGoogle Scholar
Schopf, T. J. M. 1974b. Presentation of the Schuchert Award of the Paleontological Society to David M. Raup. J. Paleontol. 48:620621.Google Scholar
Schopf, T. J. M. 1977. Patterns and themes of evolution among the Bryozoa. Pp. 159207. In: Hallam, A., ed. Patterns of Evolution. Elsevier Publ. Co.; Amsterdam.Google Scholar
Schopf, T. J. M. 1978. Fossilization potential of an intertidal fauna: Friday Harbor, Washington. Paleobiology. 4:261270.CrossRefGoogle Scholar
Schopf, T. J. M. and Murphy, L. S. 1973. Protein polymorphism of the hybridizing seastars Asterias forbesi and Asterias vulgaris and implications for their evolution. Biol. Bull. (Woods Hole). 145:589597.CrossRefGoogle Scholar
Schopf, T. J. M., Raup, D. M., Gould, S. J., and Simberloff, D. S. 1975. Genomic versus morphologic rates of evolution: influence of morphologic complexity. Paleobiology. 1:6370.CrossRefGoogle Scholar
Schuchert, C. 1918. The earth's changing surface and climate. Pp. 4581. In: Barrell, J., Schuchert, C., Woodruff, L. L., Lull, R. S., and Huntington, E.The Evolution of the Earth. Yale Univ. Press; New Haven, Conn.Google Scholar
Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology. 4:223251.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1979. A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology. 5:222251.CrossRefGoogle Scholar
Shackleton, N. J. 1977. Carbon-13 in Uvigerina: tropical rainforest history and the equatorial Pacific carbonate dissolution cycles. Pp. 401427. In: Anderson, N. R. and Malahoff, A., eds. The Fate of Fossil Fuel CO2 in the Oceans. Plenum Press; New York.CrossRefGoogle Scholar
Simberloff, D. S. 1974. Permo-Triassic extinctions: effects of area on biotic equilibrium. J. Geol. 82:267274.CrossRefGoogle Scholar
Simberloff, D. S. 1978. Using island biogeographic distributions to determine if colonization is stochastic. Am. Nat. 112:713726.CrossRefGoogle Scholar
Simpson, B. B. 1975. Pleistocene changes in the flora of the high tropical Andes. Paleobiology. 1:273294.CrossRefGoogle Scholar
Simpson, G. G. 1953. Life of the Past, An Introduction to Paleontology. 198 pp. Yale Univ. Press; New Haven, Conn.Google Scholar
Soule, D. F. and Soule, J. D. 1973. Morphology and speciation of Hawaiian and eastern Pacific Smittinidae (Bryozoa, Ectoprocta). Bull. Brit. Mus. Nat. Hist. 152:365440.Google Scholar
Soule, D. F. and Soule, J. D. 1974. Species groups in Watersiporidae. Documents des Laborataires de Gélogie de la Facultés Sciences de Lyon. Hors Série 3. (fasc. 2). pp. 299309.Google Scholar
Stanley, S. M. 1977. Trends, rates, and patterns of evolution in the Bivalvia. Pp. 209250. In: Hallam, A., ed. Patterns of Evolution. Elsevier; Amsterdam.Google Scholar
Størmer, L. 1955. Merostomata. Pp. P4P41. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology. Part P. Geol. Soc. Am.; Lawrence, Kans.Google Scholar
Taylor, A. J. P. 1950. Tory history. (Penguin Paperback, Essays in English History, A. J. P. Taylor. Pp. 1722. 1976.)Google Scholar
Thayer, C. W. 1979. Biological bulldozers and the evolution of marine benthic communities. Science. 203:458461.CrossRefGoogle ScholarPubMed
Thorpe, J. P., Beardmore, J. A., and Ryland, J. S. 1978. Genetic evidence for cryptic speciation in the marine bryozoan Alcyonidium gelatinosum. Mar. Biol. 49:2732.CrossRefGoogle Scholar
Van Valen, L. 1973. A new evolutionary law. Evol. Theory. 1:130.Google Scholar
Vaughan, T. W. 1924. Criteria and status of correlation and classification of Tertiary deposits. Geol. Soc. America Bull. 35:677742.CrossRefGoogle Scholar
White, M. J. D. 1977. Modes of Speciation. 455 pp. W. H. Freeman and Co.; San Francisco.Google Scholar
White, M. J. D. 1978. Chain processes in chromosomal speciation. Syst. Zool. 27:285298.CrossRefGoogle Scholar
Willis, J. C. 1922. Age and Area, A Study in Geographical Distribution and Origin of Species. 259 pp. Cambridge Univ. Press; Cambridge.Google Scholar