Article contents
Evolutionary trends in the articulate brachiopod hinge mechanism
Published online by Cambridge University Press: 08 February 2016
Abstract
Evolutionary patterns in the articulate brachiopod hinge are investigated and this empirical example is used as a model to examine evolutionary trends and evolutionary constraints. Several features of the hinge-system geometry exhibit persistent directional change from the Cambrian to the Recent and result in increased mechanical advantage in opening the valves. These geometric changes are reflected also in general features of shell morphology and growth and in patterns of familial diversity through time. Specific, identifiable constraints on brachiopod morphology and function related to the position of the pedicle and muscles and nature of the hinge line and hinge structures may be said to direct the observed trends. The pattern of evolutionary change among all articulate brachiopods is most satisfactorily accommodated by a diffusion model of morphological change. Examined independently, the deltidiodonts (with noninterlocking hinge structures) appear to reflect a process of directional selection through time, whereas change in the cyrtomatodont hinge mechanism (with interlocking teeth and sockets) may reflect the incidental effects of selection for increasing mantle-cavity volume rather than increasing diductor (opening) muscle moment. The “transition” from deltidiodont to cyrtomatodont hinge structures over the course of brachiopod evolutionary history may be interpreted from at least two distinctly different perspectives. Paleoecologically, this transition appears to reflect a habitat shift from soft sediment to hard, rocky substrates. Phylogenetically, the transition reflects the process of evolution: deltidiodonts persist as their modified descendants, the cyrtomatodonts. Investigating the acquisition of evolutionary novelties over time, or the transition from primitive to derived morphological features, may be the most informative approach to follow in studying evolutionary trends.
- Type
- Articles
- Information
- Copyright
- Copyright © The Paleontological Society
References
Literature Cited
- 30
- Cited by