Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-18T07:27:50.889Z Has data issue: false hasContentIssue false

Evolutionary trends in coiling of tropical Paleogene planktic foraminifera

Published online by Cambridge University Press:  08 February 2016

Richard. D. Norris
Affiliation:
MS-23, Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543-1541. E-mail: [email protected]
Hiroshi Nishi
Affiliation:
Department of Earth Science, Kyushu University, 4-2-1 Ropponmatsu, Chuo-Ku, Fukuoka, 810-8560, Japan

Abstract

Populations of planktic foraminifera display “proportionate” coiling (approximately 50% sinistral and dextral individuals given the data at hand) or may have “biased“ coiling, in which populations are dominated by either sinistral or dextral individuals. The major radiations of planktic foraminifera in the Late Cretaceous, the Paleocene to early Eocene, the middle Eocene, and the Neogene were each initiated by clades with proportionate coiling but subsequently accumulated sinistral and dextral species over time. Upper Maastrichtian foraminifera were predominantly dextral, but only the small number of species with proportionate coiling actually survived the Cretaceous/Paleogene mass extinction. The first Paleocene species with biased coiling appeared about four million years after the extinction and gradually came to represent as much as 50–60% of the tropical species diversity by the latest Paleocene. Tropical taxa with biased coiling suffered a second extinction in the late early Eocene and renewed a trend toward an increased abundance of species with biased coiling in the middle Eocene.

Our results for the Paleogene reflect a recurring theme in foraminifer evolution. In each radiation, once the founding species of a clade developed a biased-coiling mode, the descendants tended to maintain biased coiling until the extinction of the clade. The iterative evolution of biased coiling appears to represent an example in which a fundamental feature of development becomes fixed in a clade and inhibits reversion to an ancestral state. Apparently, coiling patterns are heritable in contrast with previous interpretations that coiling is environmentally controlled. On evolutionary timescales, species with proportionate coiling are less susceptible to extinction than species dominated by sinistral or dextral forms. Differential survivorship ensures that each radiation is initiated from founders with proportionate coiling following mass extinction. Hence, coiling preferences represent a case where the establishment of an evolutionary trend is caused by drift away from a “limiting boundary,” much like the evolution of large body size from ubiquitous small ancestors.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arnold, A. J., Kelley, D. C., and Parker, W. C. 1995. Causality and Cope's Rule: evidence from the planktonic foraminifera. Journal of Paleontology 69:203210.CrossRefGoogle Scholar
Bandy, O. L. 1960. The geologic significance of coiling ratios in the foraminifer Globigerina pachyderma (Ehrenberg). Journal of Paleontology 34:671681.Google Scholar
Bayer, U., and McGhee, G. R. 1984. Iterative evolution of middle Jurassic ammonite faunas. Lethaia 17:116.CrossRefGoogle Scholar
, A. W. H. 1977. An ecological, zoogeographic and taxonomic review of recent planktonic foraminifera. Pp. 1100in Ramsay, 1977.Google Scholar
, A. W. H., and Tolderlund, D. S. 1971. Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans. Pp. 105149in Funnell, B. M. and Riedel, W. R., eds. The micropaleontology of the oceans. Cambridge University Press, Cambridge.Google Scholar
Berggren, W. 1977. Atlas of Palaeogene planktonic foraminifera. Pp. 205300in Ramsay, 1977.Google Scholar
Berggren, W. A., et al. 1995. A revised Cenozoic geochronology and chronostratigraphy. Pp. 129212in Berggren, W. A., Kent, D. V., Aubry, M.-P., and Hardenbol, J., eds. Geochronology, time scales and global stratigraphic correlations: a unified temporal framework for an historical geology. SEPM (Society for Sedimentary Geology), Tulsa, Okla.Google Scholar
Berggren, W. A., and Norris, R. D. 1997. Biostratigraphy, phylogeny and systematics of Paleocene trochospiral planktic foraminifera. Micropaleontology 43(Suppl. 1).CrossRefGoogle Scholar
Blow, H. W. 1979. The Cainozoic Globigerininida, Vols. I–III. E. J., Brill, Leiden.CrossRefGoogle Scholar
Bolli, H. M. 1950. The direction of coiling in the evolution of some Globorotaliidae. Contributions from the Cushman Foundation for Foraminiferal Research 1:8289.Google Scholar
Bolli, H. M. 1951. Notes on the direction of coiling of rotalid foraminifera. Contributions from the Cushman Foundation for Foraminiferal Research 2:139143.Google Scholar
Bolli, H. M. 1971. The direction of coiling in planktonic foraminifera. Pp. 639648in Funnell, B. M. and Riedel, W. R., eds. The micropaleontology of oceans. Cambridge University Press, Cambridge.Google Scholar
Bralower, T. J., Zachos, J. C., Thomas, E., Parrow, M., Paull, C. K., Kelly, D. C., Silva, I. Premoli, Sliter, W. V., and Lohmann, K. C. 1995. Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean: stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot. Paleoceanography 10:841865.CrossRefGoogle Scholar
Brummer, G.-J. A., and Kroon, D. 1988. Genetically controlled planktonic foraminiferal coiling ratios as tracers of past ocean dynamics. Pp. 293298in Brummer, G. J. A. and Kroon, D., eds. Planktonic foraminifers as tracers of ocean-climate history. Free University Press, Amsterdam.Google Scholar
Cifelli, R. 1969. Radiation of Cenozoic planktonic foraminifera. Systematic Zoology 18:154168.CrossRefGoogle Scholar
Cifelli, R., and Scott, G. 1986. Stratigraphic record of the Neogene Globorotaliid radiation (Planktonic Foraminiferida). Smithsonian Contributions to Paleobiology 58:1101.CrossRefGoogle Scholar
Cloud, P. E. Jr. 1948. Some problems and patterns of evolution exemplified by fossil invertebrates. Evolution 2:322350.CrossRefGoogle ScholarPubMed
Coates, A. G., and Jackson, J. B. C. 1987. Clonal growth, algal symbiosis, and reef formation by corals. Paleobiology 13:363378.CrossRefGoogle Scholar
Darling, K. F., Kroon, D., Wade, C. M., and Brown, A. J. Leigh 1996. Molecular phylogeny of the planktic foraminifera. Journal of Foraminiferal Research 26:324330.CrossRefGoogle Scholar
Darling, K. F., Wade, C. M., Kroon, D., Brown, A. J. Leigh, and Bejima, J. 1999. The diversity and distribution of modern planktic foraminiferal SSU rRND genotypes and their potential as tracers of present and past ocean circulation. Paleoceanography 14:312.CrossRefGoogle Scholar
Darling, K. F., Wade, C. M., Stewart, I. A., Kroon, D., Dingle, R., and Brown, A. J. Leigh 2000. Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature 405:4347.CrossRefGoogle ScholarPubMed
de Vargas, C., Norris, R. D., Zaninetti, L., and Pawlowski, J. 1999. Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proceedings of the National Academy of Sciences USA 96:28642868.CrossRefGoogle ScholarPubMed
de Vargas, C., Renaud, S., Hilbrecht, H., and Pawlowski, J.In press. Pleistocene adaptive radiation in Globorotalia truncatulinoides: genetic, morphological, and environmental evidence. Paleobiology 27.2.0.CO;2>CrossRefGoogle Scholar
Ericson, D. B. 1959. Coiling direction of Globigerina pachyderma as a climatic index. Science 130:219220.CrossRefGoogle ScholarPubMed
Ericson, D. B., Wollin, G., and Wollin, J. 1954. Coiling direction of Globorotalia truncatulinoides in deep-sea cores. Deep-Sea Research 2:152158.Google Scholar
Freeman, G., and Lundelius, J. W. 1982. The developmental genetics of dextrality and sinistrality in the gastropod Lymnaea peregra. Wilhelm Roux's Archives 191:6983.CrossRefGoogle Scholar
Frerichs, W. E. 1971. Evolution of planktonic foraminifera and paleotemperatures. Journal of Paleontology 45:963968.Google Scholar
Galloway, J. 1987. A cause for reflection? Nature 330:204205.CrossRefGoogle Scholar
Gould, S. J. 1988. Trends as changes in variance: a new slant on progress and directionality in evolution. Journal of Paleontology 62:319329.CrossRefGoogle Scholar
Gould, S. J., Gilinsky, N. L., and German, R. Z., 1987. Asymmetry of lineages and the direction of evolutionary time. Science 236:14371441.CrossRefGoogle ScholarPubMed
Haas, O. 1942. Recurrence of morphologic types and evolutionary cycles in Mesozoic ammonites. Journal of Paleontology 16:643650.Google Scholar
Hallock, P., and Larsen, A. R. 1979. Coiling direction in Amphistegina. Marine Micropaleontology 4:3344.CrossRefGoogle Scholar
Hart, M. 1980. A water depth model for the evolution of the planktonic Foraminiferida. Nature 286:252254.CrossRefGoogle Scholar
Hemleben, C., Spindler, M., and Anderson, O. R. 1989. Modern planktonic foraminifera. Springer, New York.CrossRefGoogle Scholar
Hofker, J. Sr. 1972. Is the direction of coiling in the early stages of an evolution of planktonic foraminifera at random? (50% right and 50% left). Revista Española de Micropaleontología 4:1117.Google Scholar
Huber, B. T., Bijma, J., and Darling, K. 1997. Cryptic speciation in the living planktonic foraminifer Globigerinoides siphonifera (d'Orbigny). Paleobiology 23:3362.CrossRefGoogle Scholar
Johnson, J. 1980. Elementary statistics, 3d ed.Duxbury Press, North Scituate, Mass.Google Scholar
Kennett, J. P. 1976. Phenotypic variations in some recent and late Cenozoic planktonic foraminifera. Pp. 111166in Hedley, R. H. and Adams, C. G., eds. Foraminifera. Academic Press, London.Google Scholar
Landman, N. H. 1989. Iterative progenesis in Upper Cretaceous ammonites. Paleobiology 15:95117.CrossRefGoogle Scholar
Lohmann, G. P. 1992. Increasing seasonal upwelling in the subtropical South Atlantic over the past 700,000 yrs: evidence from deep-living planktonic foraminifera. Marine Micropaleontology 19:112.CrossRefGoogle Scholar
Malmgren, B. A. 1989. Coiling patterns in terminal Cretaceous planktonic foraminifera. Journal of Foraminiferal Research 19:311323.CrossRefGoogle Scholar
McShea, D. W. 1994. Mechanisms of large-scale trends. Evolution 48:17471763.CrossRefGoogle Scholar
Murray, J., and Clarke, B. 1966. The inheritance of polymorphic shell characters in Partula (Gastropoda). Genetics 54:12611277.CrossRefGoogle ScholarPubMed
Norris, K. S. 1967. Color adaptation in desert reptiles and its thermal relationships. Pp. 162229in Milstead, W. W., ed. Lizard ecology: a symposium at University of Missouri, June 1965. University of Missouri Press, Columbia.Google Scholar
Norris, R. D. 1991a. Biased extinction and evolutionary trends. Paleobiology 17:388399.CrossRefGoogle Scholar
Norris, R. D. 1991b. Parallel evolution of keel structure in planktic foraminifera. Journal of Foraminiferal Research 21:319331.CrossRefGoogle Scholar
Norris, R. D. 1992. Extinction selectivity and ecology in planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology 95:117.CrossRefGoogle Scholar
Norris, R. D. 1996. Symbiosis as an evolutionary innovation in the radiation of Paleocene planktic foraminifera. Paleobiology 22:461480.CrossRefGoogle Scholar
Olsson, R. K., Hemleben, C., Berggren, W. A., and Huber, B. T. 1999. Atlas of Paleocene planktonic foraminifera. Smithsonian Contributions to Paleobiology 85:1252.CrossRefGoogle Scholar
Pearson, P. N. 1993. A lineage phylogeny for the Paleogene planktonic foraminifera. Micropaleontology 39:193232.CrossRefGoogle Scholar
Silva, I. Premoli, and Boersma, A. 1988. Atlantic Eocene planktonic foraminiferal historical biogeography and paleohydrological indices. Palaeogeography, Palaeoclimatology, Palaeoecology 67:315356.CrossRefGoogle Scholar
Ramsay, A. T. S., ed. 1977. Oceanic micropaleontology. Academic Press, London.Google Scholar
Rieppel, O. 1990. Ontogeny—a way forward for systematics, a way backward for phylogeny. Biological Journal of the Linnean Society 39:177191.CrossRefGoogle Scholar
Ruddiman, W. F. 1977. Investigations of Quaternary Climate based on planktonic foraminifera. Pp. 101163in Ramsay, 1977.Google Scholar
Saito, T. 1976. Geologic significance of coiling direction in the planktonic foraminifera Pulleniatina. Geology 4:305309.2.0.CO;2>CrossRefGoogle Scholar
Savazzi, E. 1987. Geometric and functional constrains on bivalve shell morphology. Lethaia 20:293306.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology 4:223251.CrossRefGoogle Scholar
Snedecor, G. W., and Cochran, W. G. 1980. Statistical methods, 7th ed.Iowa State University Press, Ames.Google Scholar
Stainforth, R. M., et al. 1975. Cenozoic planktonic foraminiferal zonation and characteristics of index forms. University of Kansas Paleontological Contributions 62:1425.Google Scholar
Stanley, S. M. 1973. An explanation for Cope's rule. Evolution 27:126.CrossRefGoogle ScholarPubMed
Strathmann, R. R. 1978a. The evolution and loss of feeding larval stages of marine invertebrates. Evolution 32:894906.CrossRefGoogle ScholarPubMed
Strathmann, R. R. 1978b. Progressive vacating of adaptive types during the Phanerozoic. Evolution 32:907914.CrossRefGoogle ScholarPubMed
Strathmann, R. R. 1993. Hypotheses on the origins of marine larvae. Annual Review of Ecology and Systematics 24:89117.CrossRefGoogle Scholar
Sturtevant, A. H. 1923. Inheritance of direction of coiling in Limnaea. Science 58:269270.CrossRefGoogle Scholar
Subbotina, N. N. 1971. Fossil Foraminifera of the USSR. Translated by Lees, E.Collet's, London.Google Scholar
Sylvester-Bradley, P. C. 1959. Iterative evolution in fossil oysters. Fifteenth International Congress on Zoology, Proceeding, pp. 193196.Google Scholar
Toumarkine, M., and Bolli, H. M. 1970. Évolution de Globorotalia cerroazulensis (Cole) dans l'Éocène moyen et supérieur de Possagno (Italie). Revue de Micropaleontologie 13:131145.Google Scholar
Tourmarkine, M., and Luterbacher, H. 1985. Paleocene and Eocene planktic foraminifera. Pp. 87154in Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K., eds. Plankton stratigraphy. Cambridge University Press, Cambridge.Google Scholar
Vincent, E., and Berger, W. H. 1981. Planktonic foraminifera and their use in paleoceanography. Pp. 10251119in Emiliani, E., ed. The oceanic lithosphere: the sea. Wiley, New York.Google Scholar
Xu, X., Kimoto, K., and Oda, M. 1995. Predominance of left-coiling Globorotalia truncatulinoides (d'Orbigny) between 115,000 and 50,000 years bp: a latest foraminiferal biostratigraphic event in the western North Pacific. Quaternary Research 34:3947.CrossRefGoogle Scholar