Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T11:26:57.655Z Has data issue: false hasContentIssue false

The evolution of the dicynodont sacrum: constraint and innovation in the synapsid axial column

Published online by Cambridge University Press:  27 February 2019

Christopher T. Griffin
Affiliation:
Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, U.S.A. E-mail: [email protected]
Kenneth D. Angielczyk
Affiliation:
Integrative Research Center, Field Museum of Natural History, Chicago, Illinois 60605, U.S.A. E-mail: [email protected]

Abstract

Constraint is a universal feature of morphological evolution. The vertebral column of synapsids (mammals and their close relatives) is a classic example of this phenotypic restriction, with greatly reduced variation in the number of vertebrae compared with the sauropsid lineage. Synapsids generally possess only three sacral vertebrae, which articulate with the ilium and play a key role in locomotion. Dicynodont anomodonts are the exception to this rule, possessing seven or more sacral vertebrae while reaching a range of body sizes rivaled among synapsids only by therian mammals. Here we explore the evolution of this unusual sacral morphology in dicynodonts by (1) hypothesizing homologies of the additional sacral vertebrae, (2) using ancestral state reconstruction and phylogenetic regressions (e.g., logistic regression, Poisson regression) to track the coevolution of sacral count and body size, and (3) proposing mechanisms by which additional sacral vertebrae were incorporated during dicynodont evolution. We find that sacral vertebral morphology covaries with sacral count in consistent ways across dicynodonts, implying that sacra with a given number of vertebrae are composed of homologous elements. There is a correlation between increased sacral count and larger body size, especially at the shift from four to five sacrals near the origin of Bidentalia. Based on position, morphology, and the consistent number of presacral vertebrae among dicynodonts, we hypothesize that the additional sacrals anterior to the plesiomorphic three are duplications of the first sacral, and that a single caudosacral was incorporated by a shift in the identity of the anteriormost caudal vertebra. Although changes in sacral count appear to be correlated with shifts in body size in dicynodonts, the evolution of general morphological conservativism in the synapsid sacrum remains to be further explored.

Type
Articles
Copyright
Copyright © 2019 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.f7k2333

References

Literature Cited

Alberch, P. 1989. The logic of monsters: evidence for internal constraint in development and evolution. Geobios 2:2157.Google Scholar
Angielczyk, K. D. 2001. Preliminary phylogenetic analysis and stratigraphic congruence of the dicynodont anomodonts (Synapsida: Therapsida). Palaeontologica Africana 37:5379.Google Scholar
Angielczyk, K. D. 2007. New specimens of the Tanzanian dicynodont “Cryptocynodon” parringtoni Von Huene,1942 (Therapsida, Anomodontia), with an expanded analysis of Permian dicynodont phylogeny. Journal of Vertebrate Paleontology 27:116131.Google Scholar
Angielczyk, K. D., and Kurkin, A. A.. 2003. Phylogenetic analysis of Russian Permian dicynodonts (Therapsida: Anomodontia): implications for Permian biostratigraphy and Pangaean biogeography. Zoological Journal of the Linnean Society 139:157212.Google Scholar
Angielczyk, K. D., and Walsh, M. L.. 2008. Patterns in the evolution of nares size and secondary palate length in anomodont therapsids (Synapsida): implications for hypoxia as a cause of end-Permian tetrapod extinctions. Journal of Paleontology 82:528542.Google Scholar
Arnold, S. J. 1992. Constraints on phenotypic evolution. American Naturalist 140:S85S107.Google Scholar
Arthur, W. 2003. Developmental constraint and natural selection. Evolution and Development 5:117118.Google Scholar
Arthur, W., and Farrow, M.. 1999. The pattern of variation in centipede segment number as an example of developmental constraint in evolution. Journal of Theoretical Biology 200:183191.Google Scholar
Bandyopadhyay, S. 1988. A kannemeyeriid dicynodont from the Middle Triassic Yerrapalli Formation. Philosophical Transactions of the Royal Society of London B 320:185233.Google Scholar
Barghusen, H. R. 1975. A review of fighting adaptations in dinocephalians (Reptilia, Therapsida). Paleobiology 1:295311.Google Scholar
Baumel, J. J., and Witmer, L. M.. 1993. Osteologia. Pp. 45132 in Baumel, J. J., King, A. S., Breazile, J. E., Evans, H. E., and Van den Berge, J. C., eds. Handbook of avian anatomy: nomina anatomica avium, 2nd ed. Nuttall Ornithological Club, Cambridge, Mass.Google Scholar
Bonaparte, J. F. 1962. Descripción del cránio y mandíbula de Exaeretodon frenguellii, Cabrera y su comparación con Diademodontidae, Tritylodontidae y los cinodontos sudamericanos. Publicaciones del Museo Municipal de Ciencias Naturales y Tradicional de Mar del Plata 1:135202.Google Scholar
Bonaparte, J. F. 1963. Descriptión del esqueleto postcraneano de Exaeretodon (Cynodontia–Traversodontidae). Acta Geológica Lilloana 4:552.Google Scholar
Bonaparte, J. F., and Barberena, M. C.. 2001. On two advanced carnicorous cynodonts from the Late Triassic of southern Brazil. Bulletin of the Museum of Comparative Zoology 156:5980.Google Scholar
Botha-Brink, J., and Angielczyk, K. D.. 2010. Do extraordinarily high growth rates in Permo-Triassic dicynodonts (Therapsida, Anomodontia) explain their success before and after the end-Permian extinction? Zoological Journal of the Linnean Society 160:341365.Google Scholar
Boulet, A. M., and Capecchi, M. R.. 2002. Duplication of the Hoxd11 gene causes alterations in the axial and appendicular skeleton of the mouse. Developmental Biology 249:96107.Google Scholar
Brakefield, P. M. 2006. Evo-devo and constraints on selection. Trends in Ecology and Evolution 21:362368.Google Scholar
Brakefield, P. M., and Roskam, J. C.. 2006. Exploring evolutionary constraints is a task for an integrative evolutionary biology. American Naturalist 168:S4S13.Google Scholar
Brusatte, S. L., Benton, M. J., Ruta, M., and Lloyd, F. T.. 2008. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. Science 321:14851488.Google Scholar
Buchholtz, E. A. 2012. Flexibility and constraint: patterning the axial skeleton in mammals. Pp. 230256 in Asher, R. J. and Müller, J., eds. From clone to bone. Cambridge University Press, Cambridge.Google Scholar
Buchholtz, E. A. 2014. Crossing the frontier: a hypothesis for the origins of meristic constraint in mammalian axial patterning. Zoology 117:6469.Google Scholar
Buchholtz, E. A., and Stepien, C. C.. 2009. Anatomical transformation in mammals: developmental origin of aberrant cervical anatomy in tree sloths. Evolution and Development 11:6979.Google Scholar
Buchholtz, E. A., Wayrynen, K. L., and Lin, I. W.. 2014. Breaking constraint: axial patterning in Trichechus (Mammalia: Sirenia). Evolution and Development 16:382393.Google Scholar
Burke, A. C., Nelson, C. E., Morgan, B. A., and Tabin, C.. 1995. Hox genes and the evolution of vertebrate axial morphology. Development 121:333346.Google Scholar
Burnham, K. P., and Anderson, D. R.. 2002. Model selection and multimodel inference: a practical information-theoretic approach, 2nd ed. Springer-Verlag, New York.Google Scholar
Cabreira, S. F., Kellner, A. W. A., Dias-de-Silva, S., Silva, L. R. d, Bronzato, M., Marsola, J. C. d. A., Müller, R. T., Bittencourt, J. d. S., Batista, B. J., Raugust, T., Carrilho, R., Brodt, A., and Langer, M. C.. 2016. A unique Late Triassic dinosauromorph assemblage reveals dinosaur ancestral anatomy and diet. Current Biology 26:16.Google Scholar
Casaca, A., Santos, A. C., and Mallo, M.. 2014. Controlling Hox gene expression and activity to build the vertebrate axial skeleton. Developmental Dynamics 243:2436.Google Scholar
Castanhinha, R., Araújo, R., Júnior, L. C., Angielczyk, K. D., Martins, G. G., Martins, R. M. S., Chaouiya, C., Beckmann, F., and Wilde, F.. 2013. Bringing dicynodonts back to life: paleobiology and anatomy of a new emydopoid genus from the Upper Permian of Mozambique. PLoS ONE 8:e80974.Google Scholar
Chen, M., and Luo, Z.-X.. 2013. Postcranial skeleton of the cretaceous mammal Akidolestes cifellii and its locomotor adaptations. Journal of Mammalian Evolution 20:159189.Google Scholar
Chudinov, P. K. 1965. Deinocephalians of the U.S.S.R. International Geology Review 7:16291639.Google Scholar
Cluver, M. A. 1974. The cranial morphology of the Lower Triassic dicynodont Myosaurus gracilis. Annals of the South African Museum 66:3554.Google Scholar
Codron, J., Botha-Brink, J., Codron, D., Huttenlocker, A. K., and Angielczyk, K. D.. 2017. Predator–prey interactions amongst Permo-Triassic terrestrial vertebrates as a deterministic factor influencing faunal collapse and turnover. Journal of Evolutionary Biology 30:4054.Google Scholar
Colbert, E. H. 1948. The mammal-like reptile Lycaenops. Bulletin of the American Museum of Natural History 89:353404.Google Scholar
Cooke, J., and Zeeman, E. C.. 1976. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. Journal of Theoretical Biology 58:455476.Google Scholar
Cordes, R., Schuster-Gossler, K., Serth, K., and Gossler, A.. 2004. Specification of vertebral identity is coupled to Notch signaling and the segmentation clock. Development 131:12211233.Google Scholar
Crompton, A. W., and Jenkins, F. A. Jr. 1973. Mammals from reptiles: a review of mammalian origins Annual Review of Earth and Planetary Sciences 1:131155.Google Scholar
Cruickshank, A. R. 1967. A new dicynodont genus from the Manda Formation of Tanzania (Tanganyika). Journal of Zoology 153:163208.Google Scholar
Cuvier, G. 1835. Leçons d'Anatomie Comparée, Vol. 1, 2nd ed. Crochard, Paris. 587 p.Google Scholar
Davis, A. P., and Capecchi, M. R.. 1994. Axial homeosis and appendicular skeleton defects in mice with a targeted disruption of hoxd-11. Development 120:21872198.Google Scholar
Dequéant, M. L., and Pourquié, O.. 2008. Segmental patterning of the vertebrate embryonic axis. Nature Reviews Genetics 9:370382.Google Scholar
Dequéant, M. L., Glynn, E., Gaudenz, K., Wahl, M., Chen, J., Mushegian, A., and Pourquié, O.. 2006. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314:15951598.Google Scholar
de Vos, M. G. J., Dawid, A., Sunderlikova, V., and Tans, S. J.. 2015. Breaking evolutionary constraint with a tradeoff ratchet. Proceedings of the National Academy of Sciences USA 112:1490614911.Google Scholar
Dzik, J., Sulej, T., and Niedźwiedzki, G.. 2008. A dicynodont-tetrapod association in the latest Triassic of Poland. Acta Palaeontologica Polonica 53:733738.Google Scholar
Ezcurra, M. D. 2016. The phylogenetic relationships of basal archosauromorphs, with an emphasis on the systematics of proterosuchian archosauriforms. PeerJ 4:e1778.Google Scholar
Flower, W. H., and Lydekker, R.. 1891. An introduction to the study of mammals, living and extinct. Adam and Charles Black, London. 762 p.Google Scholar
Fritz, S. A., and Purvis, A.. 2010. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conservation Biology 24:10421051.Google Scholar
Fröbisch, J., and Reisz, R. R.. 2011. The postcranial anatomy of Suminia getmanovi (Synapsida: Anomodontia), the earliest known arboreal tetrapod. Zoological Journal of the Linnean Society 162:661698.Google Scholar
Futuyma, D. J. 2010. Evolutionary constraint and ecological consequences. Evolution 64:18651884.Google Scholar
Galis, F. 1999. Why do almost all mammals have seven cervical vertebrae? Developmental constraints, Hox genes, and cancer. Journal of Experimental Zoology B 285:1926.Google Scholar
Galis, F., Carrier, D. R., van Alphen, J., van der Mije, S. D., Van Dooren, T. J. M., Metz, J. A. J., and ten Broek, C. M. A.. 2014. Fast running restricts evolutionary change of the vertebral column in mammals. Proceedings of the National Academy of Sciences USA 111:1140111406.Google Scholar
Gebauer, E. V. I. 2007. Phylogeny and evolution of the gorgonopsia with a special reference to the skull and skeleton of GPIT/RE/7113 (‘Aelurognathus?’ parringtoni). Doctoral dissertation. Eberhard Karls University of Tübingen, Tübingen, Germany.Google Scholar
Gebauer, E. V. I. 2014. Re-assessment of the taxonomic position of the specimen GPIT/RE/7113 (Sauroctonus parringtoni comb. nov., Gorgonopsia). Pp. 185207 in Kammerer, C. F., Angielczyk, K. D., and Fröbisch, J., eds. Early evolutionary history of the Synapsida. Springer, Dordrecht, Netherlands.Google Scholar
Gérard, M., Chen, J.-Y., Gronemeyer, H., Chambon, P., Duboule, D., and Zákány, J.. 1996. In vivo targeted mutagenesis of a regulatory element required for positioning the Hoxd-11 and Hoxd-10 expression boundaries. Genes and Development 10:23262334.Google Scholar
Gérard, M., Zákány, J., and Duboule, D.. 1997. Interspecies exchange of a Hoxd enhancer in vivo induces premature transcription and anterior shift of the sacrum. Developmental Biology 190:3240.Google Scholar
Gomez, C., Özbudak, E. M., Wunderlich, J., Baumann, D., Lewis, J., and Pourquié, O.. 2008. Control of segment number in vertebrate embryos. Nature 454:335339.Google Scholar
Gow, C. E., and Grine, F. E.. 1979. An articulated skeleton of a small individual of Diademodon (Therapsida: Cynodontia). Palaeontologica Africana 22:2934.Google Scholar
Gregory, W. K. 1926. The skeleton of Moschops capensis Broom, a dinocephalian reptile from the Permian of South Africa. Bulletin of the American Museum of Natural History 56:179251.Google Scholar
Griffin, C. T., Stefanic, C. M., Parker, W. G., Hungerbühler, A., and Stocker, M. R.. 2017. Sacral anatomy of the phytosaur Smilosuchus adamanensis, with implications for pelvic girdle evolution among Archosauriformes. Journal of Anatomy 231:886905.Google Scholar
Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., and Challenger, W.. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24(1):129131.Google Scholar
Head, J. J. and Polly, P. D.. 2015. Evolution of the snake body form reveals homoplasy in amniote Hox gene function. Nature 520:8689.Google Scholar
Ho, L. S. T., and Ane, C.. 2014. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Systematic Biology 63:397408.Google Scholar
Huene, F. F. von. 1936. Die Fossilen Reptilien des Sudamerikanischen Gondwanalandes an der Zeitenwende: Ergebnisse der Sauriergrabuiigen in Südbrazilien 1928/1929. Lieferung II. Beck'sche Verlagsbuchhandlung, Munich. Pp. 93159.Google Scholar
Ikeya, M., and Takada, S.. 2001. Wnt-3a is required for somite specification along the anteroposterior axis of the mouse embryo and for regulation of cdx-1 expression. Mechanisms of Development 103:2733.Google Scholar
Irmis, R. B. 2011. Evaluating hypotheses for the early diversification of dinosaurs. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 101:397426.Google Scholar
Ives, A. R., and Garland, T. J.. 2010. Phylogenetic logistic regression for binary dependent variables. Systematic Biology 59:926.Google Scholar
Jenkins, F. A. Jr. 1971. The postcranial skeleton of African cynodonts. Bulletin of the Peabody Museum of Natural History 36:1216.Google Scholar
Ji, Q., Luo, Z.-X., Zhang, X., and Xu, L.. 2009. Evolutionary development of the middle ear in Mesozoic therian mammals. Science 326:278281.Google Scholar
Jones, K. E., Angielczyk, K. D., Polly, P. D., Head, J. J., Fernandez, V., Lungmus, J. K., Tulga, S., and Pierce, S. E.. 2018. Fossil reveal the complex evolutionary history of the mammalian regionalized spine. Science 361:12491252.Google Scholar
Juul, L. 1994. The phylogeny of basal archosaurs. Palaeontologica Africana 31:138.Google Scholar
Kammerer, C. F., Angielczyk, K. D., and Fröbisch, J.. 2011. A comprehensive taxonomic revision of Dicynodon (Therapsida, Anomodontia) and its implications for dicynodont phylogeny, biogeography, and biostratigraphy. Journal of Vertebrate Paleontology 31:1158.Google Scholar
Kammerer, C. F., Fröbisch, J., and Angielczyk, K. D.. 2013. On the validity and phylogenetic position of Eubrachiosaurus browni, a kannemeyeriiform dicynodont (Anomodontia) from Triassic North America. PLoS ONE 8:e64203.Google Scholar
Kemp, T. S. 1982. Mammal-like reptiles and the origin of mammals. Academic Press, New York.Google Scholar
Kemp, T. S. 2005. The Origin and Evolution of Mammals. Oxford University Press, New York.Google Scholar
Keyser, A. W. 1974. Evolutionary trends in Triassic Dicynodontia. Palaeontologia Africana 17:5769.Google Scholar
Kielan-Jaworowska, Z., Cifelli, R. L., and Luo, Z.-X.. 2004. Mammals from the age of dinosaurs. Columbia University Press, New York.Google Scholar
King, G. M. 1992. The palaeobiogeography of Permian anomodonts. Terra Nova 4:633640.Google Scholar
Kitching, J. W. 1977. The distribution of the Karoo vertebrate fauna. Memoirs of the Bernard Price Institute for Palaeontological Research 1:1111.Google Scholar
Kühne, W. G. 1956. The Liassic therapsid Oligokyphus. British Museum (Natural History), London.Google Scholar
Langer, M. C. 2004. Basal Saurischia. Pp. 2546 in Weishampel, D. B., Dodson, P., and Osmólska, H., eds. The Dinosauria, 2nd ed. University of California Press, Berkeley.Google Scholar
Langer, M. C., and Benton, M. J.. 2006. Early dinosaurs: a phylogenetic study. Journal of Systematic Palaeontology 4:309358.Google Scholar
LeBlanc, A. R. H., and Reisz, R. R.. 2014. New postcranial material of the early caseid Casea broilii Williston, 1910 (Synapsida: Caseidae) with a review of the evolution of the sacrum in Paleozoic non-mammalian synapsids. PLoS ONE 9:e115734.Google Scholar
Leboucq, H. J. 1898. Recherches sur les variations anatomiques de la première côte chez l'homme. Archives de Biologie 15:9178.Google Scholar
Lee, M. S. Y. 1997. Pareiasaur phylogeny and the origin of turtles. Zoological Journal of the Linnean Society 120:197280.Google Scholar
Li, G., and Luo, Z.-X.. 2006. A Cretaceous symmetrodont therian with some monotreme-like postcranial features. Nature 439:195200.Google Scholar
Luo, Z.-X., Chen, P., and Chen, M.. 2007a. A new eutriconodont mammal and evolutionary development in early mammals. Nature 446:288293.Google Scholar
Luo, Z.-X., Ji, Q., and Yuan, C.-X.. 2007b. Convergent dental adaptations in pseudo-tribosphenic and tribosphenic mammals. Nature 450:9397.Google Scholar
Martinelli, A. G., de la Fuente, M., and Abdala, F.. 2009. Diademodon tetragonus (Therapsida: Cynodontia) in the Triassic of South America and its biostratigraphic implications. Journal of Vertebrate Paleontology 29:852862.Google Scholar
Martinelli, A. G., Kammerer, C. F., Melo, T. P., Neto, V. D. P., Ribeiro, A. M., Da-Rosa, A. A. S., and Soares, M. B.. 2017. The African cynodont Aleodon (Cynodontia, Probainognathia) in the Triassic of southern Brazil and its biostratigraphic significance. PLoS ONE 12:e0177948.Google Scholar
Matsubara, Y., Hirasawa, T., Egawa, S., Hattori, A., Suganuma, T., Kohara, Y., Nagai, T., Tamura, K., Kuratani, S., Kuroiwa, A., and Suzuki, T.. 2018. Anatomical integration of the sacral-hindlimb unit coordinated by GDF11 underlies variation in hindlimb positioning in tetrapods. Nature Ecology and Evolution 1:13921399.Google Scholar
Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., Lande, R., Raup, D., and Wolpert, L.. 1985. Developmental Constraints and Evolution. Quarterly Review of Biology 60:265287.Google Scholar
Mivart, S. G., and Clarke, R.. 1879. XX. On the sacral plexus and sacral vertebrae of Lizards and other Vertebrata. Transactions of the Linnean Society of London, series 2: Zoology 1:513532.Google Scholar
Müller, J., Scheyer, T. M., Head, J. J., Barrett, P. M., Werneburg, I., Ericson, P. G. P., Pol, D., and Sánchez-Villagra, M. R.. 2010. Homeotic effects, somitogenesis and the evolution of vertebral numbers in recent and fossil amniotes. Proceedings of the National Academy of Sciences USA 107:21182123.Google Scholar
Narita, Y., and Kuratani, S.. 2005. Evolution of the vertebral formulae in mammals: a perspective on developmental constraints. Journal of Experimental Zoology B 304B:91106.Google Scholar
Nesbitt, S. J. 2011. The early evolution of archosaurs: relationships and the origin of major clades. Bulletin of the American Museum of Natural History 352:1292.Google Scholar
Nesbitt, S. J., Smith, N. D., Irmis, R. B., Turner, A. H., Downs, A., and Norell, M. A.. 2009. A complete skeleton of a Late Triassic saurischian and the early evolution of dinosaurs. Science 326:15301533.Google Scholar
Novas, F. E. 1996. Dinosaur monophyly. Journal of Vertebrate Paleontology 16:723741.Google Scholar
Oliveira, T. V. d., Schultz, C. L., and Soares, M. B.. 2009. A partial skeleton of Chiniquodon (Cynodontia, Chiniquodontidae) from the Brazilian Middle Triassic. Revista Brasileira de Paleontologia 12:113122.Google Scholar
Olroyd, S. L., Sidor, C. A., and Angielczyk, K. D.. 2018. New materials of the enigmatic dicynodont Abajudon kaayai (Therapsida, Anomodontia) from the lower Madumabisa Mudstone Formation, middle Permian of Zambia. Journal of Vertebrate Paleontology 37:e1403442.Google Scholar
Olsen, E. C. 1968. The family Caseidae. Fieldiana: Geology 17:225349.Google Scholar
Orme, C. D. L., Freckleton, R. P., Thomas, G. H., Petzoldt, T., Fritz, S. A., and Isaac, N. J. B.. 2013. CAPER: comparative analyses of phylogenetics and evolution in R. Methods in Ecology and Evolution 3:145151.Google Scholar
Palmeirim, I., Henrique, D., Ish-Horowicz, D., and Pourquié, O.. 1997. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 9:639648.Google Scholar
Paradis, E., and Claude, J.. 2002. Analysis of comparative data using generalized estimating equations. Journal of Theoretical Biology 218:175185.Google Scholar
Paradis, E., Claude, J., and Strimmer, K.. 2004. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20:289290.Google Scholar
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Core Team. 2016. nlme: Linear and Nonlinear Mixed Effects Models, Version 3.1-128.Google Scholar
Ray, S. 2006. Functional and evolutionary aspects of the postcranial anatomy of dicynodonts (Synapsida, Therapsida). Palaeontology 49:12631286.Google Scholar
R Core Team. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Reisz, R. R. 1986. Pelycosauria. Pp. 1102 in Wellenhofer, P., ed. Handbuch der Paläoherpetologie, Vol. 17A. Gustav Fischer Verlag, Stuttgart.Google Scholar
Revell, L. J. 2012. phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3:217223.Google Scholar
Romer, A. S. 1956. Osteology of the reptiles. University of Chicago Press, Chicago.Google Scholar
Romer, A. S., and Lewis, A. D.. 1973. The Chañares (Argentina) Triassic reptile fauna XIX. Postcranial materials of the cynodonts Probelesodon and Probainognathus. Breviora 407:126.Google Scholar
Ruta, M., Wagner, P. J., and Coates, M. I.. 2006. Evolutionary patterns in early tetrapods. I. Rapid initial diversification followed by decrease in rates of character change. Proceedings of the Royal Society of London B 273:21072111.Google Scholar
Ruta, M., Angielczyk, K. D., Fröbisch, J., and Benton, M. J.. 2013. Decoupling of morphological disparity and taxic diversity during the adaptive radiation of anomodont therapsids. Proceedings of the Royal Society of London B 280:20131071.Google Scholar
Sánchez-Villagra, M. R., Narita, Y., and Kuratani, S.. 2007. Thoracolumbar vertebral number: the first skeletal synapomorphy for afrotherian mammals. Systematics and Biodiversity 5:17.Google Scholar
Schultz, A. H. 1961. Vertebral column and thorax. Pp. 5/15/66 in Hofer, H., Schultz, A. H., and Stark, D., eds. Primatologia: handbook of primatology. S. Karger, Basel.Google Scholar
Schwenk, K. 1995. A utilitarian approach to evolutionary constraint. Zoology 98:251262.Google Scholar
Sereno, P. C. 1999. The evolution of dinosaurs. Science 284:21372147.Google Scholar
Sereno, P. C., Forster, C. A., Rogers, R. R., and Monetta, A. M.. 1993. Primitive dinosaur skeleton from Argentina and the early evolution of Dinosauria. Nature 361:6466.Google Scholar
Sookias, R. B., Butler, R. J., and Benson, R. B. J.. 2012. Rise of dinosaurs reveals major body size transitions are driven by passive processes of trait evolution. Proceedings of the Royal Society of London B 279:21802187.Google Scholar
Sulej, T., and Niedżwiedzki, G.. 2019. An elephant-sized Late Triassic synapsid with erect limbs. Science 363:7880.Google Scholar
Sun, A.-L. 1963. The Chinese kannemeyeriids. Paleontologica Sinica 17:1109. [In Chinese.]Google Scholar
Surkov, M. V. 1999. Triassic anomodonts of European Russia and their stratigraphical significance. University of Saratov, Russia. 218 p. [In Russian.]Google Scholar
Surkov, M. V., Kalandadze, N. N., and Benton, M. J.. 2005. Lystrosaurus georgi, a dicynodont from the Lower Triassic of Russia. Journal of Vertebrate Paleontology 25:402413.Google Scholar
Turner, A. H., and Nesbitt, S. J.. 2013. Body size evolution during the Triassic archosauriform radiation. In Nesbitt, S. J., Desojo, J. B., and Irmis, R. B., eds. Anatomy, phylogeny, and palaeobiology of early archosaurs and their kin. Geological Society of London Special Publication 379:573597.Google Scholar
Turner, M. L., and Sidor, C. A.. 2018. Pathology in a Permian parareptile: congenital malformation of sacral vertebrae. Journal of Zoology 304:1320.Google Scholar
Turner, M. L., Makovicky, P. J., and Norell, M. A.. 2012. A review of dromaeosaurid systematics and paravian phylogeny. Bulletin of the American Museum of Natural History 371:1206.Google Scholar
Uyeda, J. C., and Harmon, L. J.. 2014. A novel Bayesian method for inferring and interpreting the dynamics of adaptive landscapes from phylogenetic comparative data. Systematic Biology 63:902918.Google Scholar
Uyeda, J. C., Zenil-Ferguson, R., and Pennell, M. W.. 2018. Rethinking phylogenetic comparative methods. Systematic Biology 67:10911109.Google Scholar
Wellik, D. M. 2007. Hox patterning of the vertebrate axial skeleton. Developmental Dynamics 236:24542463.Google Scholar
Wellik, D. M., and Capecchi, M. R.. 2003. Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 301:363367.Google Scholar
Zákány, J., Gérard, M., Favier, B., Potter, S. S., and Duboule, D.. 1996. Functional equivalence and rescue among group 11 Hox gene products in vertebral patterning. Developmental Biology 176:325328.Google Scholar
Zákány, J., Gérard, M., Favier, B., and Duboule, D.. 1997. Deletion of a HoxD enhancer induces transcriptional heterochrony leading to transposition of the sacrum. EMBO Journal 16:43934402.Google Scholar
Zhou, C.-F., Wu, S., Martin, T., and Luo, Z.-X.. 2013. A Jurassic mammaliaform and the earliest mammalian evolutionary adaptations. Nature 500:163167.Google Scholar