Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T16:55:08.389Z Has data issue: false hasContentIssue false

Evolution of taxonomic diversity gradients in the marine realm: a comparison of Late Jurassic and Recent bivalve faunas

Published online by Cambridge University Press:  08 April 2016

J. Alistair Crame*
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom. E-mail: [email protected]

Abstract

We still have much to learn about the evolution of taxonomic diversity gradients through geologic time. For example, have latitudinal gradients always been as steep as they are now, or is this a phenomenon linked to some form of Cenozoic global climatic differentiation? The fossil record offers potential to address this sort of problem, and this study reconstructs latitudinal diversity gradients for the last (Tithonian) stage of the Jurassic period using marine bivalves. At this time of relative global warmth, bivalves were cosmopolitan in their distribution and the commonest element within macrobenthic assemblages.

Analysis of 31 regional bivalve faunas demonstrates that Tithonian latitudinal gradients were present in both hemispheres, though on a much smaller magnitude than today. The record of the Northern Hemisphere gradient is more complete and shows a steep fall in values at the tropical/temperate boundary; the Southern Hemisphere gradient exhibits a more regular decline in diversity with increasing latitude.

Tithonian latitudinal gradients were underpinned by a tropical bivalve fauna that comprises almost equal numbers of epifaunal and infaunal taxa. The epifaunal component was dominated by three pteriomorph families, the Pectinidae, Limidae and Ostreidae, that may be regarded as a long-term component of tropical bivalve diversity. Of the mixture of older and newer “heteroconch” families that formed the bulk of the infaunal component, the latter radiated spectacularly through the Late Cretaceous and Cenozoic to dominate tropical bivalve faunas at the present day. This pulse of heteroconch diversification, which was a major cause of the steepening of the bivalve latitudinal gradient, provides important evidence that rates of speciation may be negatively correlated with latitude.

Nevertheless, we cannot exclude the possibility that elevated extinction rates in the highest latitudes also contributed to the marked steepening of bivalve latitudinal gradients over the last 150 Myr. Rates of extinction within epifaunal bivalve taxa appear to have been higher in these regions through the Cretaceous period, but this was largely before any significant global climatic deterioration. Infaunal bivalve clades have had differential success over this time period in the polar regions. Whereas, in comparison with the Tropics, heteroconchs are very much reduced in numbers today, the anomalodesmatans are much better represented, and the protobranchs have positively thrived. We are beginning to appreciate that low temperature per se may not be a primary cause of elevated rates of extinction. Food supply may be an equally important control on both rates of speciation and extinction; those bivalves that have been able to adapt to the extreme seasonality of food supply have flourished in the polar regions.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aberhan, M. 1994. Guild-structure and evolution of Mesozoic benthic shelf communities. Palaios 9:516545.Google Scholar
Addicott, W. O. 1970. Latitudinal gradients in Tertiary molluscan faunas of the Pacific coast. Palaeogeography, Palaeoclimatology, Palaeoecology 8:287312.Google Scholar
Arntz, W. E., Brey, T., and Gallardo, V. A. 1994. Antarctic zoo-benthos. Marine Biology and Oceanography Reviews 32:241303.Google Scholar
Bambach, R. K. 1990. Late Palaeozoic provinciality in the marine realm. In McKerrow, W. S. and Scotese, C. R., eds. Palaeozoic palaeogeography and biogeography. Geological Society of London Memoir 12:307323.Google Scholar
Barthel, K. W. 1969. Die obertithonische regressive Flach-wasser-Phase der Neuburger Folge in Bayern. Abhandlungen Bayerische Akademie der Wissenschaften Mathematisch- Naturwissenschaftliche Klasse, N. F. 142:1174.Google Scholar
Beauvais, L. 1973. Upper Jurassic hermatypic corals. Pp. 317328in Hallam, A., ed. Atlas of palaeobiogeography. Elsevier, Amsterdam.Google Scholar
Beauvais, L. 1989. Jurassic corals from the circum Pacific area. Memoir of the Association of Australasian Palaeontologists 8:291302.Google Scholar
Bertling, M., and Insalaco, E. 1998. Late Jurassic coral /microbial reefs from the northern Paris Basin—facies, palaeoecology and palaeobiogeography. Palaeogeography, Palaeoclimatology, Palaeoecology 139:139175.Google Scholar
Brown, J. H., and Lomolino, M. V. 1998. Biogeography, 2d ed.Sinauer, Sunderland, Mass.Google Scholar
Casey, R. 1952. Some genera and subgenera, mainly new, of Mesozoic heterodont lamellibranchs. Proceedings of the Malacological Society of London 29:121176.Google Scholar
Clarke, A. 1990. Temperature and evolution: Southern Ocean cooling and the Antarctic marine fauna. Pp. 922in Kerry, K. R. and Hermpel, G., eds. Antarctic ecosystems: ecological change and conservation. Springer, Berlin.CrossRefGoogle Scholar
Clarke, A. 1993. Temperature and extinction in the sea: a physiologist's view. Paleobiology 19:499518.Google Scholar
Cope, J. C. W. 1993. The Bolonian Stage: an old answer to an old problem. Newsletters on Stratigraphy 28:151156.Google Scholar
Cope, J. C. W. 1997. The early phylogeny of the Class Bivalvia. Palaeontology 40:713746.Google Scholar
Crame, J. A. 1996. Antarctica and the evolution of taxonomic diversity gradients in the marine realm. Terra Antarctica 3:121134.Google Scholar
Crame, J. A. 2000a. Evolution of taxonomic diversity gradients in the marine realm: evidence from the composition of Recent bivalve faunas. Paleobiology 26:188214.Google Scholar
Crame, J. A. 2000b. The nature and origin of taxonomic diversity gradients in marine bivalves. Pp. 347360in Harper, et al. 2000b.Google Scholar
Crame, J. A. 2000c. Intrinsic and extrinsic controls on the diversification of the Bivalvia. Pp. 135148in Culver, S. J. and Rawson, P. F., eds. Biotic response to global change: the last 145 million years. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Crane, P. R., and Lidgard, S. 1989. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246:675678.CrossRefGoogle ScholarPubMed
Flessa, K. W., and Jablonski, D. 1995. Biogeography of Recent marine bivalve molluscs and its implications for paleobiogeography and the geography of extinction: a progress report. Historical Biology 10:2547.Google Scholar
Fürsich, F. T., and Aberhan, M. 1990. Significance of time-averaging for palaeocommunity analysis. Lethaia 23:143152.Google Scholar
Fürsich, F. T., and Sykes, R. M. 1977. Palaeobiogeography of the European Boreal Realm during Oxfordian (Upper Jurassic) times: a quantitative approach. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 155:137161.Google Scholar
Fürsich, F. T., and Werner, W. 1986. Benthic associations and their environmental significance in the Lusitanian Basin (Upper Jurassic, Portugal). Neues Jahrbuch für Paläontologie, Abhandlungen 172:271329.CrossRefGoogle Scholar
Gaston, K. J., and Spicer, J. L. 1998. Biodiversity: an introduction. Blackwell Science, London.Google Scholar
Gradstein, F. M., Agterberg, F. P., Ogg, J. G., Hardenbol, J., van Veen, P., Thierry, J., and Huang, Z. 1994. A Mesozoic time scale. Journal of Geophysical Research 99:24,05124,074.Google Scholar
Hallam, A. 1975. Jurassic environments. Cambridge University Press, Cambridge.Google Scholar
Hallam, A. 1976. Stratigraphic distribution and ecology of European Jurassic bivalves. Lethaia 9:245259.Google Scholar
Hallam, A. 1977. Jurassic bivalve biogeography. Paleobiology 3:5873.CrossRefGoogle Scholar
Hallam, A. 1986. Evidence of displaced terranes from Permian to Jurassic faunas around the Pacific margins. Journal of the Geological Society, London 143:209216.Google Scholar
Hallam, A. 1994. An outline of Phanerozoic biogeography. Oxford University Press, Oxford.Google Scholar
Hallam, A., Biró-Bagóczky, L., and Pérez, E. 1986. Facies analysis of the Lo Valdés Formation (Tithonian-Hauterivian) of the High Cordillera of central Chile, and the palaeogeographic evolution of the Andean Basin. Geological Magazine 123:425435.Google Scholar
Harper, E. M., Hide, E., and Morton, B. 2000a. Relationships between the extant Anomalodesmata: a cladistic test. Pp. 129143in Harper, et al. 2000b.Google Scholar
Harper, E. M., Taylor, J. D., and Crame, J. A., eds. 2000b. The evolutionary biology of the Bivalvia. Geological Society of London Special Publication 177.CrossRefGoogle Scholar
Høpner Petersen, G., and Vedelsby, A. 2000. An illustrated catalogue of the Paleocene Bivalvia from Nuussuaq, Northwest Greenland: their paleoenvironments and the paleoclimate. Steenstrupia 25:25120.Google Scholar
Jablonski, D., and Raup, D. M. 1995. Selectivity of end-Cretaceous marine bivalve extinctions. Science 268:389391.Google Scholar
Jablonski, D., Roy, K., and Valentine, J. W. 2000. Analysing the latitudinal diversity gradient in marine bivalves. Pp. 361365in Harper, et al. 2000b.Google Scholar
Kauffman, E. G. 1973. Cretaceous Bivalvia. Pp. 353383in Hallam, A., ed. Atlas of palaeobiogeography. Elsevier, Amsterdam.Google Scholar
Koch, C. F. 1998. ‘Taxonomic barriers’ and other distortions within the fossil record. Pp. 189206in Donovan, S. K. and Paul, C. R.C., eds. The adequacy of the fossil record. Wiley, Chichester, England.Google Scholar
Lawver, L. A., Gahagan, L. M., and Coffin, M. F. 1992. The development of paleoseaways around Antarctica. In Kennett, J. P. and Warnke, D. A., eds. The Antarctic paleoenvironment: a perspective on global change, Part 1. Antarctic Research Series 56:730. American Geophysical Union, Washington, D.C.Google Scholar
Leinfelder, R. R., Krautter, M., Laternser, R., Nose, M., Schmid, D. U., Schweigert, G., Werner, W., Keupp, H., Brugger, H., Herrmann, R., Rehfeld-Kiefer, U., Schroeder, J. H., Reinhold, C., Koch, R., Zeiss, A., Schweizer, V., Christmann, H., Menges, G., and Luterbacher, H. P. 1994. The origin of Jurassic reefs: current research developments and results. Facies 31:156.Google Scholar
Chunlian, Liu. 1995. Jurassic bivalve palaeobiogeography of the Proto-Atlantic and the application of multivariate analysis methods to palaeobiogeography. Beringeria 16:3123.Google Scholar
Chunlian, Liu, Heinze, M., and Fürsich, F. T. 1997. Bivalve provinces in the Proto-Atlantic and along the southern margin of the Tethys in the Jurassic. Palaeogeography, Palaeoclimatology, Palaeoecology 137:127151.Google Scholar
Magurran, A. E. 1988. Ecological diversity and its measurement. Croom Helm, London.Google Scholar
Moore, G. T., Hayashida, D. N., Ross, C. A., and Jacobson, S. R. 1992. Paleoclimate of the Kimmeridgian/Tithonian (Late Jurassic) world. I. Results using a general circulation model. Palaeogeography, Palaeoclimatology, Palaeoecology 93:113150.Google Scholar
Mordvilko, T. A. 1979. Early Cretaceous heterodont bivalved molluscs from the southern USSR (Arcticidae and Glossidae). Nauka, Moscow. [In Russian.]Google Scholar
Morton, B. S. 1982. The functional morphology of Parilimya fragilis (Bivalvia: Parilimyidae nov. fam.) with a discussion on the origin and evolution of the carnivorous septibranchs and a reclassification of the Anomalodesmata. Transactions of the Zoological Society of London 36:153216.Google Scholar
Prezant, R. S. 1998. Superfamily Pholadomyoidea. Pp. 405407in Beesley, P. L., Ross, G. J.B. and Wells, A., eds. Fauna of Australia, Vol. 5. Mollusca: the southern synthesis, Part A. CSIRO, Melbourne.Google Scholar
Raup, D. M., and Jablonski, D. 1993. Geography of end-Cretaceous marine bivalve extinctions. Science 260:971973.CrossRefGoogle ScholarPubMed
Raymond, A., Kelley, P. H., and Lutken, C. B. 1989. Polar glaciers and life at the equator: the history of Dinantian and Namurian (Carboniferous) climate. Geology 17:408411.Google Scholar
Roy, K., Jablonski, D., Valentine, J. W., and Rosenberg, G. 1998. Marine latitudinal diversity gradients: tests of causal hypotheses. Proceedings of the National Academy of Sciences USA 95:36993702.Google Scholar
Roy, K., Jablonski, D., and Valentine, J. W. 2000. Dissecting latitudinal diversity gradients: functional groups and clades of marine bivalves. Proceedings of the Royal Society of London B 267:293299.Google Scholar
Scotese, C. R. 1991. Jurassic and Cretaceous plate tectonic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 87:493501.CrossRefGoogle Scholar
Scotese, C. R., and Golonka, J. 1992. PALEOMAP Paleogeographic Atlas, PALEOMAP Progress Report 20. Department of Geology, University of Texas at Arlington.Google Scholar
Scott, R. W. 1988. Evolution of Late Jurassic and Early Cretaceous reef biotas. Palaios 3:184193.Google Scholar
Signor, P. W. 1990. The geologic history of diversity. Annual Reviews of Ecology and Systematics 21:509539.Google Scholar
Skelton, P. W., and Benton, M. J. 1993. Mollusca: Rostroconchia, Scaphopoda and Bivalvia. Pp. 237263in Benton, M. J., ed. The fossil record 2. Chapman and Hall, London.Google Scholar
Skelton, P. W., Crame, J. A., Morris, N. J., and Harper, E. M. 1990. Adaptive convergence and taxonomic radiation in post-Palaeozoic bivalves. In Taylor, P. D. and Larwood, G. P., eds. Major evolutionary radiations. Systematic Association Special Volume 42:91117. Clarendon, Oxford.Google Scholar
Slack-Smith, S. M. 1998. Superfamily Crassatelloidea. Pp. 325328in Beesley, P. L., Ross, G. J. B. and Wells, A., eds. Fauna of Australia, Vol. 5. Mollusca: the southern synthesis, Part A. CSIRO, Melbourne.Google Scholar
Smith, A. G., Hurley, A. M., and Briden, J. C. 1981. Phanerozoic paleocontinental world maps. Cambridge University Press, Cambridge.Google Scholar
Smith, A. G., Smith, D. G., and Funnell, B. M. 1994. Atlas of Mesozoic and Cenozoic coastlines. Cambridge University Press, Cambridge.Google Scholar
Stanley, S. M. 1970. Relation of shell form to life habits of the Bivalvia (Mollusca). Geological Society of America Memoir 125:1296.Google Scholar
Stanley, S. M. 1977. Trends, rates and patterns of evolution in the Bivalvia. Pp. 209250in Hallam, A., ed. Patterns of evolution as illustrated by the fossil record. Elsevier, Amsterdam.Google Scholar
Stanley, S. M. 1998. Macroevolution: pattern and process. Johns Hopkins University Press, Baltimore.Google Scholar
Stehli, F. G., Douglas, R. G., and Newell, N. D. 1969. Generation and maintenance of gradients in taxonomic diversity. Science 164:947949.Google Scholar
Stevens, G. R., and Speden, I. G. 1978. New Zealand. Pp. 251328in Moullade, M. and Nairn, A. E. M., eds. The Phanerozoic geology of the world, 2. The Mesozoic, Vol. A. Elsevier, Amsterdam.Google Scholar
Stilwell, J. D. 2000. Eocene Mollusca (Bivalvia, Gastropoda and Scaphopoda) from McMurdo Sound: systematics and paleoecologic significance. In Stilwell, J. D. and Feldmann, R. M., eds. Paleobiology and paleoenvironments of Eocene rocks, McMurdo Sound, East Antarctica. Antarctic Research Series 76:261320. American Geophysical Union, Washington, D. C.Google Scholar
Townson, W. G. 1975. Lithostratigraphy and deposition of the type Portlandian. Journal of the Geological Society, London 131:619638.Google Scholar
Valentine, J. SW. 1983. Seasonality: effects in marine benthic communities. Pp. 121156in Tevesz, M. J.S. and McCall, P. L., eds. Biotic interactions in recent and fossil benthic communities. Plenum, New York.Google Scholar
Vaught, K. C. 1989. A classification of the living Mollusca. American Malacologists, Melbourne, Fla.Google Scholar
Veron, J. E. N. 1995. Corals in space and time: the biogeography and evolution of the Scleractinia. Comstock/Cornell, London.Google Scholar
Wilson, J. L. 1975. Carbonate facies in geologic history. Springer, New York.Google Scholar