Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T07:45:45.803Z Has data issue: false hasContentIssue false

Evolution of single characters in the Jurassic ammonite Kosmoceras

Published online by Cambridge University Press:  08 February 2016

David M. Raup
Affiliation:
Department of Geology, Field Museum of Natural History, Chicago, Illinois 60605
Rex E. Crick
Affiliation:
Department of Geology, University of Texas, Arlington, Texas 76019

Abstract

The classic biometrical study of phyletic evolution in Kosmoceras (Brinkmann 1929) is evaluated using unpublished raw data provided by Professor Brinkmann. Most morphological characters show statistically significant changes over time yet it is difficult to provide an unequivocal biological interpretation for these changes. In a few cases, runs tests indicate that evolution was nonrandom in the sense that fewer reversals in the direction of evolution occurred than would be predicted from a null hypothesis based on a random walk. These cases suggest persistence of natural selection regimes for fairly long periods of time. In other cases, and with other kinds of testing, the random walk model cannot be rejected although failure to reject the hypothesis does not justify its acceptance! Thus, the contribution of random factors (either genetic drift or selection in a randomly changing environment) cannot be assessed with confidence. It is problematical also whether the Kosmoceras series represent significant evolution by phyletic gradualism or just the natural temporal variation that characterizes stasis (sensu Eldredge and Gould 1972).

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bookstein, F. L., Gingerich, P. O., and Kluge, A. G. 1978. Hierarchical linear modeling of the tempo and mode of evolution. Paleobiology. 4:120134.CrossRefGoogle Scholar
Brinkmann, R. 1928. Statistisch-phylogenetische Untersuchingen an Ammoniten. Verhandl. V. Internat. Kongr. Vererbungswiss. (Supp. I) pp. 496513.Google Scholar
Brinkmann, R. 1929a. Statistisch-biostratigraphische Untersuchungen an mitteljurassischen Ammoniten über Artbegriff und Stammesenwicklung. Abh., Ges. Wiss. Göttingen, Math-Phys Kl., N.F. 13(3):1249.Google Scholar
Brinkmann, R. 1929b. Monographie der Gattung Kosmoceras. Abh., Ges. Wiss Göttingen, Math-Phys Kl., N.F. 13(4):1123.Google Scholar
Callomon, J. H. 1955. The ammonite succession in the Lower Oxford Clay and Kellaway Beds at Kidlington, Oxfordshire, and the zones of the Callovian Stage. Philos. Trans., R. Soc. London (B). 239:215264.Google Scholar
Callomon, J. H. 1963. Sexual dimorphism in Jurassic ammonites. Trans., Leicester Litt. Phil. Soc. 57:2166.Google Scholar
Callomon, J. H. 1969. Dimorphism in Jurassic ammonites. pp. 111125. In: Westermann, G. E. G., ed. Sexual Dimorphism in Fossil Metazoa and Taxonomic Implications. Int. Union Geol. Sci. Vol. 1.Google Scholar
Donovan, D. T. 1973. The influence of theoretical ideas on ammonite classification from Hyatt to Trueman. Univ. Kansas Paleontol. Contrib. 62:116.Google Scholar
Eldredge, N. and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. pp. 82115. In: Schopf, T. J. M., ed. Models in Paleobiology. Freeman, Cooper and Co.; San Francisco, California.Google Scholar
Gould, S. J. and Eldredge, N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology. 3:115151.CrossRefGoogle Scholar
Hewitt, R. A. and Hurst, J. M. 1977. Size changes in Jurassic liparoceratid ammonites and their stratigraphical and ecological significance. Lethaia. 10:287301.CrossRefGoogle Scholar
Kennedy, W. J. 1977. Ammonite evolution. pp. 251304. In: Hallam, A., ed. Patterns of Evolution. Elsevier Sci. Publ. Co.; Amsterdam.Google Scholar
Makowski, H. 1962. Problem of sexual dimorphism in ammonites. Palaeontol. Polonica. 12:192.Google Scholar
Malmgren, B. A. and Kennett, J. P. 1981. Phyletic gradualism in a Late Cenozoic planktonic foraminiferal lineage: DSDP Site 284, Southwest Pacific. Paleobiology. 7:230240.CrossRefGoogle Scholar
Mayr, E. 1963. Animal Species and Evolution. Harvard Univ. Press; Cambridge.CrossRefGoogle Scholar
Miller, R. L. and Kahn, J. S. 1962. Statistical Analysis in the Geological Sciences. John Wiley & Sons, Inc.; New York.Google Scholar
Raup, D. M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. J. Paleontol. 41:4365.Google Scholar
Raup, D. M. 1977. Stochastic models in evolutionary paleontology. pp. 5978. In: Hallam, A., ed. Patterns of Evolution. Elsevier Sci. Publ. Co.; Amsterdam.Google Scholar
Rensch, B. 1960. Evolution above the Species Level. Columbia Univ. Press; New York.Google Scholar
Sachs, H. M. and Hasson, P. F. 1979. Comparison of species vs. character description for very high resolution biostratigraphy using cannartid radiolarians. J. Paleontol. 53:11121120.Google Scholar
Simpson, G. G. 1953. The Major Features of Evolution. Columbia Univ. Press; New York.CrossRefGoogle Scholar
Sokal, R. R. and Rohlf, F. J. 1969. Biometry. W. H. Freeman and Co.; San Francisco.Google Scholar
Sylvester-Bradley, P. C. 1977. Biostratigraphical tests of evolutionary theory. pp. 4163. In: Kauffman, E. F. and Hazel, J. E., eds. Concepts and Methods of Biostratigraphy. Dowden, Hutchinson, and Ross, Inc.; New York.Google Scholar
Wallis, W. A. and Roberts, H. V. 1956. Statistics. The Free Press; Glencoe, Illinois.Google Scholar
Woodford, A. O. 1963. Correlation by fossils. pp. 75111. In: Albritton, C. C. Jr., ed. The Fabric of Geology. Addison-Wesley Publ. Co.; New York.Google Scholar