Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T23:16:39.581Z Has data issue: false hasContentIssue false

Evolution of developmental potential and the multiple independent origins of leaves in Paleozoic vascular plants

Published online by Cambridge University Press:  08 February 2016

C. Kevin Boyce
Affiliation:
Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138. E-mail: [email protected]
Andrew H. Knoll
Affiliation:
Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138. E-mail: [email protected]

Abstract

Four vascular plant lineages, the ferns, sphenopsids, progymnosperms, and seed plants, evolved laminated leaves in the Paleozoic. A principal coordinate analysis of 641 leaf species from North American and European floras ranging in age from Middle Devonian through the end of the Permian shows that the clades followed parallel trajectories of evolution: each clade exhibits rapid radiation of leaf morphologies from simple (and similar) forms in the Late Devonian/Early Carboniferous to diverse, differentiated leaf forms, with strong constraint on further diversification beginning in the mid Carboniferous. Similar morphospace trajectories have been documented in studies of morphological evolution in animals; however, plant fossils present unique opportunities for understanding the developmental processes that underlie such patterns. Detailed comparison of venation in Paleozoic leaves with that of modern leaves for which developmental mechanisms are known suggests developmental interpretations for the origination and early evolution of leaves. The parallel evolution of a marginal meristem by the modification of developmental mechanisms available in the common ancestor of all groups resulted in the pattern of leaf evolution repeated by each clade. Early steps of leaf evolution were followed by constraint on further diversification as the possible elaborations of marginal growth were exhausted. Hypotheses of development in Paleozoic leaves can be tested by the study of living plants with analogous leaf morphologies.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abbott, M. L. 1958. The American species of Asterophyllites, Annularia, and Sphenophyllum. Bulletin of American Paleontology 38:289390.Google Scholar
Andrews, H. N. 1961. Studies in Paleobotany. Wiley, New York.Google Scholar
Arnott, H. J. 1959. Anastomoses in the venation of Ginkgo biloba. American Journal of Botany 46:405411.CrossRefGoogle Scholar
Barghoorn, E. S. 1940. The ontogenetic development and phylogenetic specialization of rays in the xylem of dicotyledons. I. The primitive ray structure. American Journal of Botany 27:918928.CrossRefGoogle Scholar
Bateman, R. M., Crane, P. R., DiMichele, W. A., Kenrick, P. R., Rowe, N. P., Speck, T., and Stein, W. E. 1998. Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation. Annual Review of Ecology and Systematics 29:263292.CrossRefGoogle Scholar
Batenburg, L. H. 1977. The Sphenophyllum species in the Carboniferous flora of Holz (Westphalian D, Saar Basin, Germany). Review of Palaeobotany and Palynology 24:69100.CrossRefGoogle Scholar
Beck, A. L., and Labandeira, C. C. 1998. Early Permian insect folivory on a gigantopterid-dominated riparian flora from north-central Texas. Palaeogeography, Palaeoclimatology, Palaeoecology 142:139173.CrossRefGoogle Scholar
Beerling, D. J., Osborne, C. P., and Chaloner, W. G. 2001. Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era. Nature 410:352354.CrossRefGoogle ScholarPubMed
Berleth, T., Mattsson, J., and Hardtke, C. S. 2000. Vascular continuity and auxin signals. Trends in Plant Science 5:387393.CrossRefGoogle ScholarPubMed
Bookstein, F. L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge.Google Scholar
Boureau, E., and Doubinger, J. 1975. Traité de paléobotanique, Tome IV, Fasc. 2. Pteridophylla (première partie). Masson, Paris.Google Scholar
Carland, F. M., and McHale, N. A. 1996. LOP1: a gene involved in auxin transport and vascular patterning in Arabidopsis. Development 122:18111819.CrossRefGoogle ScholarPubMed
Carland, F. M., Berg, B. L., FitzGerald, J. N., Jinamornphongs, S., Nelson, T., and Keith, B. 1999. Genetic regulation of vascular tissue patterning in Arabidopsis. The Plant Cell 11:21232137.CrossRefGoogle ScholarPubMed
Caruso, J. L., Pence, V. C., and Leverone, L. A. 1995. Immunoassay methods of plant hormone analysis. Pp. 433447in Davies, P. J., ed. Plant hormones: physiology, biochemistry and molecular biology. Kluwer Academic, Netherlands.CrossRefGoogle Scholar
Cleal, C. J., and Thomas, B. A. 1994. Plant fossils of the British coal measures. The Palaeontological Association, London.Google Scholar
Collinson, M. E. 1996. “What use are fossil ferns?”: 20 years on: with a review of the fossil history of extant pteridophyte families and genera. Pp. 349394in Camus, J. M., Gibby, M., and Johns, R. J., eds. Pteridology in perspective. Royal Botanic Gardens, Kew, England.Google Scholar
Dolan, L. P., and Poethig, R. S. 1998. Clonal analysis of leaf development in cotton. American Journal of Botany 85:315321.CrossRefGoogle ScholarPubMed
Esau, K. 1953. Plant anatomy. Wiley, New York.Google Scholar
Feild, T. S., Zweiniecki, M. A., Bodribb, T., Jaffre, T., Donoghue, M. J., and Holbrook, N. M. 2000. Structure and function of tracheary elements in Amborella trichopoda. International Journal of Plant Science 161:705712.CrossRefGoogle Scholar
Foote, M. 1995. Morphology of Carboniferous and Permian crinoids. Contributions from the Museum of Paleontology, University of Michigan 29:135184.Google Scholar
Foster, A. S. 1952. Foliar venation in angiosperms from an ontogenetic standpoint. American Journal of Botany 39:752766.CrossRefGoogle Scholar
Gälweiler, L., Guan, C., Muller, A., Wisman, E., Mendgen, K., Yephremov, A., and Palme, K. 1998. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:22262230.CrossRefGoogle ScholarPubMed
Gifford, E. M., and Foster, A. S. 1989. Morphology and evolution of vascular plants, 3d ed.W. H. Freeman, New York.Google Scholar
Givnish, T. 1979. On the adaptive significance of leaf form. Pp. 375407in Solbrig, O. T., Jain, S., Johnson, G. B., and Raven, P. H., eds. Topics in plant population biology. Columbia University Press, New York.Google Scholar
Gower, J. C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325338.CrossRefGoogle Scholar
Hagemann, W., and Gleissberg, S. 1996. Organogenetic capacity of leaves: the significance of marginal blastozones in angiosperms. Plant Systematics and Evolution 199:121152.CrossRefGoogle Scholar
Kenrick, P., and Crane, P. R. 1997. The origin and early diversification of land plants. Smithsonian Institution Press, Washington, D.C.Google Scholar
Kerp, H. 2000. The modernization of landscapes during the Late Paleozoic–Early Mesozoic. In Gastaldo, R. A. and DiMichele, W. A., eds. Phanerozoic terrestrial ecosystems. The Paleontological Society Papers 6:79113.CrossRefGoogle Scholar
Knauss, M. J., and Gillespie, W. H. 2001. Genselia compacta (Jongmans et al.) Knaus et Gillespie comb. nov.: new insights into possible developmental pathways of early photosynthetic units. Palaeontographica, Abteilung B 256:6994.CrossRefGoogle Scholar
Knoll, A. H., and Carroll, S. B. 1999. Early animal evolution: emerging views from comparative biology and geology. Science 284:21292137.CrossRefGoogle ScholarPubMed
Knoll, A. H., and Niklas, K. J. 1987. Adaptation, plant evolution, and the fossil record. Review of Palaeobotany and Palynology 50:127149.CrossRefGoogle ScholarPubMed
Korn, R. W. 1998. Studies on vein formation in the leaf of the fern Thelypteris palustris Schott. International Journal of Plant Science 159:275282.CrossRefGoogle Scholar
Lupia, R. 1999. Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record. Paleobiology 25:128.Google Scholar
Ma, Y., and Steeves, T. A. 1992. Auxin effects on vascular differentiation in Ostrich Fern. Annals of Botany 70:277282.CrossRefGoogle Scholar
MacLeod, N. 1999. Generalizing and extending the eigenshape method of shape space visualization and analysis. Paleobiology 25:107138.Google Scholar
Mattsson, J., Sung, Z. R., and Berleth, T. 1999. Responses of plant vascular systems to auxin transport inhibition. Development 126:29792991.CrossRefGoogle ScholarPubMed
McElwain, J. C., Beerling, D. J., and Woodward, F. I. 1999. Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285:13861390.CrossRefGoogle ScholarPubMed
McGhee, G. R. Jr. 1999. Theoretical morphology: the concept and its applications. Columbia University Press, New York.Google Scholar
Moctezuma, E., and Feldman, L. J. 1999. Auxin redistributes upwards in graviresponding gynophores of the peanut plant. Planta 209:180186.CrossRefGoogle ScholarPubMed
Niklas, K. J. 1994. Morphological evolution through complex domains of fitness. Proceedings of the National Academy of Sciences USA 91:67726779.CrossRefGoogle ScholarPubMed
Niklas, K. J. 1997a. Adaptive walks through fitness landscapes for early vascular plants. American Journal of Botany 84:1625.CrossRefGoogle Scholar
Niklas, K. J. 1997b. The evolutionary biology of plants. University of Chicago Press, Chicago.Google Scholar
Poethig, R. S., and Sussex, I. M. 1985a. The developmental morphology and growth dynamics of the tobacco leaf. Planta 165:158169.CrossRefGoogle ScholarPubMed
Poethig, R. S., and Sussex, I. M. 1985b. The cellular parameters of leaf development in tobacco: a clonal analysis. Planta 165:170184.CrossRefGoogle ScholarPubMed
Pray, T. R. 1955. Foliar venation of angiosperms. II. Histogenesis of the venation of Liriodendron. American Journal of Botany 42:1827.CrossRefGoogle Scholar
Pray, T. R. 1960. Ontogeny of the open dichotomous venation in the pinna of the fern Nephrolepis. American Journal of Botany 47:319328.CrossRefGoogle Scholar
Pray, T. R. 1962. Ontogeny of the closed dichotomous venation of Regnellidium. American Journal of Botany 49:464472.CrossRefGoogle Scholar
Pryer, K. M., Schneider, H., Smith, A. R., Cranfill, R., Wolf, P. G., Hunt, J. S., and Sipes, S. D. 2001. Horsetails and ferns are a monophyletic group and the closest living relatives to the seed plants. Nature 409:618622.CrossRefGoogle Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Remy, R., and Remy, W. 1977. Die floren des Erdaltertums. Glückauf, Essen.Google Scholar
Roth, A., and Mosbrugger, V. 1996. Numerical studies of water conduction in land plants: evolution of early stele types. Paleobiology 22:411421.CrossRefGoogle Scholar
Roth-Nebelsick, A., Uhl, D., Mosbrugger, V., and Kerp, H. 2001. Evolution and function of leaf venation architecture: a review. Annals of Botany 87:553566.CrossRefGoogle Scholar
Rothwell, G. W., and Stockey, R. A. 1989. Fossil Ophioglossaceae in the Paleocene of western North America. American Journal of Botany 76:637644.CrossRefGoogle Scholar
Sachs, T. 1981. The control of the patterned differentiation of vascular tissues. Advances in Botanical Research 9:151262.CrossRefGoogle Scholar
Sachs, T. 1991. Pattern formation in plant tissues. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Scheckler, S. E. 1976. Ontogeny of progymnosperms. I. Shoots of Upper Devonian Aneurophytales. Canadian Journal of Botany 54:202219.CrossRefGoogle Scholar
Scheckler, S. E. 1978. Ontogeny of progymnosperms. II. Shoots of Upper Devonian Archaeopteridales. Canadian Journal of Botany 56:31363170.CrossRefGoogle Scholar
Scott, D. H. 1909. Studies in fossil botany. Adam and Charles Black, London.Google Scholar
Shubin, N., Tabin, C., and Carroll, S. 1997. Fossils, genes and the evolution of animal limbs. Nature 388:639648.CrossRefGoogle ScholarPubMed
Sieburth, L. E. 1999. Auxin is required for leaf vein pattern in Arabidopsis. Plant Physiology 121:11791190.CrossRefGoogle ScholarPubMed
Smith, L. H., and Bunje, P. M. 1999. Morphological diversity of inarticulate brachiopods through the Phanerozoic. Paleobiology 25:396408.CrossRefGoogle Scholar
Sneath, P. H. A., and Sokal, R. R. 1973. Numerical taxonomy. W. H. Freeman, San Francisco.Google Scholar
Stein, W. E. 1993. Modeling the evolution of stelar architecture in vascular plants. International Journal of Plant Science 154:229263.CrossRefGoogle Scholar
Stein, W. E. 1998. Developmental logic: establishing a relationship between developmental process and phylogenetic pattern in primitive vascular plants. Review of Palaeobotany and Palynology 102:1542.CrossRefGoogle Scholar
Steinmann, T., Geldner, N., Grebe, M., Mangold, S., Jackson, C. L., Paris, S., Gälweiler, L., Palme, K., and Jurgens, G. 1999. Coordinated polar localization of auxin efflux carrier in PIN1 by GNOM ARF GEF. Science 286:316318.CrossRefGoogle ScholarPubMed
Taylor, T. N., and Taylor, E. L. 1993. The biology and evolution of fossil plants. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
Trivett, M. L., and Pigg, K. B. 1996. A survey of reticulate venation among fossil and living plants. Pp. in Taylor, D. W. and Hickey, L. J., eds. Flowering plant origin, evolution and phylogeny. Chapman and Hall, New York.Google Scholar
Valentine, J. W., Erwin, D. H., and Jablonski, D. 1999. Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development 126:851859.CrossRefGoogle ScholarPubMed
Wagner, W. H. J. 1979. Reticulate veins in the systematics of modern ferns. Taxon 28:8795.CrossRefGoogle Scholar
White, R. A., and Turner, M. D. 1995. Anatomy and development of the fern sporophyte. Botanical Review 61:281305.CrossRefGoogle Scholar
Wight, D. C. 1987. Non-adaptive change in early land plant evolution. Paleobiology 13:208214.CrossRefGoogle Scholar
Wolpert, L. 1971. Positional information and pattern formation. Current Topics in Developmental Biology 6:183192.CrossRefGoogle ScholarPubMed
Zurakowski, K. A., and Gifford, E. M. 1988. Quantitative studies of pinnule development in the ferns Adiantum raddianum and Cheilanthes viridis. American Journal of Botany 75:15591570.CrossRefGoogle Scholar