Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-03T23:20:04.907Z Has data issue: false hasContentIssue false

Evaluating fish scale preservation in sediment records from the oxygen minimum zone off Peru

Published online by Cambridge University Press:  08 April 2016

Renato Salvatteci
Affiliation:
Centro de Investigación Científica y de Educación Superior de Ensenada, Apartado Postal 2732, Ensenada, Baja California C.P., 22860, México. E-mail: [email protected]
David B. Field
Affiliation:
Hawaii Pacific University, College of Natural Sciences, 45-045 Kamehameha Highway, Kaneohe, Hawaii, 96744-5297
Timothy Baumgartner
Affiliation:
Centro de Investigación Científica y de Educación Superior de Ensenada, Apartado Postal 2732, Ensenada, Baja California C.P., 22860, México. E-mail: [email protected]
Vicente Ferreira
Affiliation:
Centro de Investigación Científica y de Educación Superior de Ensenada, Apartado Postal 2732, Ensenada, Baja California C.P., 22860, México. E-mail: [email protected]
Dimitri Gutierrez
Affiliation:
Instituto del Mar del Perú, Esquina Gamarra y General Valle s/n, Callao, 22000 Perú

Abstract

Fish scales accumulating in marine laminated sediments can provide a record of population variability of small pelagic fishes. Although some studies have noted signs of scale degradation that could affect estimates of population variability, there are presently no well-developed means to evaluate degradation. We developed several indices as indicators of fish scale preservation in two box-cores that we collected off Pisco (14°S), one at 301 m near the center of the oxygen minimum zone (OMZ), and the other at 201 m near the upper limit of the OMZ. These indices include (1) an index of fish scale integrity (estimate of scale wholeness relative to fragmentation), (2) the fungi-free area of fish scales and vertebrae, (3) the ratio of fish scales to vertebrae (as well as fish scales to vertebrae and bones), and (4) the ratio of whole scales to fragments. We address whether lower numbers of anchovy scales occurring in association with reduced total organic carbon fluxes and higher bottom-water oxygen concentrations are due entirely to lower abundances of anchovy or whether differential preservation of the fish scales in the sediments plays an important role in reduced scale abundances. Comparison of temporal sequences between the two cores provides the means to assess whether there are differences in the preservation of fish scales. The combined indices indicate that the lower numbers of fish scales in the earliest period have been affected by degradation, and to a greater degree in the box-core from 201 meters, which can be subject to higher oxygen concentrations. On the other hand, decadal-scale variations in fish scale abundance within the period of better preservation are unlikely to be caused by degradation. We discuss the utility and drawbacks of different indices of preservation for reconstructing past changes in fish population sizes with fluxes of fish debris and also briefly discuss the utility of these indices to other paleobiological systems.

Type
Articles
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: LOCEAN, UMR 7159 (IRD, CNRS, UPMC, MNHN), Institut Pierre Simon Laplace, Laboratoire d'Océanographie et du Climat: Expérimentations et Analyses Numériques. Center IRD France Nord, 32 avenue Henri Varagnat, 93143 Bondy cedex, France

References

Literature Cited

Agnihotri, R., Altabet, M. A., Herbert, T., and Tierney, J. E. 2008. Subdecadally resolved paleoceanography of the Peru margin during the last two millennia. Geochemistry, Geophysics, Geosystems 9:115.Google Scholar
Atlas, E., and Pytkowicz, R. M. 1977. Solubility behavior of apatites in seawater. Limnology and Oceanography 22:290300.Google Scholar
Bakun, A., and Broad, K. 2003. Environmental “loopholes” and fish population dynamics: comparative pattern recognition with focus on El Niño effects in the Pacific. Fisheries Oceanography 12:458473.Google Scholar
Barber, R. T., and Chavez, F. 1983. Biological consequences of El Niño. Science 222:12031210.Google Scholar
Baumgartner, T., Soutar, A., and Ferreira-Bartrina, V. 1992. Reconstruction of the history of pacific sardine and northern anchovy populations over the past two millennia from sediments of the Santa Barbara basin, California. CalCOFI Report 33:2440.Google Scholar
Chavez, F., Bertrand, A., Guevara-Carrasco, R., Soler, P., and Csirke, J. 2008. The northern Humboldt Current System: brief history, present status and a view towards the future. Progress in Oceanography 79:95105.Google Scholar
Checkley, D., Alheit, J., Oozeki, Y., and Roy, C. 2009a. Climate change and small pelagic fish. Cambridge University Press, Cambridge.Google Scholar
Checkley, D., Ayon, P., Baumgartner, T., Bernal, M., Coetzee, J., Emmett, R., Guevara-Carrasco, R., Hutchings, L., Ibaibarriaga, L., Nakata, H., Oozeki, Y., Planque, B., Schweigert, J., Stratoudakis, Y., and van der Lingen, C. 2009b. Habitats. Pp. 1244 in Checkley et al. 2009a.Google Scholar
DeVries, T., and Pearcy, W. 1982. Fish debris in sediments of the upwelling zone off central Peru: a late Quaternary record. Deep-Sea Research 28:87109.Google Scholar
Díaz-Ochoa, J. A., Lange, C. B., Pantoja, S., De Lange, G. J., Gutierrez, D., Muñoz, P., and Salamanca, M. 2008. Fish scales in sediments from off Callao, central Peru. Deep-Sea Research Part II 56:11241135.Google Scholar
Espinoza, P., and Bertrand, A. 2008. Revisiting Peruvian anchovy (Engraulis ringens) trophodynamics provides a new vision of the Humboldt Current system. Progress in Oceanography 79:215227.Google Scholar
Field, D. B., Baumgartner, T. R., Ferreira, V., Gutierrez, D., Lozano-Montes, H., Salvatteci, R., and Soutar, A. 2009. Variability from scales in marine sediments and other historical records. Pp. 4563 in Checkley et al. 2009a.Google Scholar
Finney, B. P., Gregory-Eaves, I., Douglas, M. S. V., and Smol, J. P. 2002. Fisheries productivity in the northeastern Pacific Ocean over the past 2200 years. Nature 416:729733.Google Scholar
Finney, B. P., Alheit, J., Emeis, K. C., Field, D. B., Gutierrez, D., and Struck, U. 2010. Paleoecological studies on variability in marine fish populations: a long-term perspective on the impacts of climatic change on marine ecosystems. Journal of Marine Systems 79:316326.Google Scholar
Glantz, S. A. 2002. Primer of biostatistics. McGraw-Hill, New York.Google Scholar
Gutierrez, D., Sifeddine, A., Reyss, J. L., Vargas, G., Velazco, F., Salvatteci, R., Ferreira-Bartrina, V., Ortlieb, L., Field, D., Baumgartner, T., Boussafir, M., Boucher, H., Valdes, J., Marinovic, L., Soler, P., and Tapia, P. 2006. Anoxic sediments off Central Peru record interannual to multidecadal changes of climate and upwelling ecosystems during the last two centuries. Advances in Geosciences 6:119125.Google Scholar
Gutierrez, D., Sifeddine, A., Field, D. B., Ortlieb, L., Vargas, G., Chavez, F., Velazco, F., Ferreira, V., Tapia, P., Salvatteci, R., Boucher, H., Morales, M. C., Valdes, J., Reyss, J. L., Campusano, A., Boussafir, M., Mandeng-Yogo, M., Garcia, M., and Baumgartner, T. 2009. Rapid reorganization in ocean biogeochemistry off Peru towards the end of the Little Ice Age. Biogeosciences 6:835848.Google Scholar
Hamada, M., and Mikuni, A. 1990. X-ray diffraction analysis of sardine scale ash. Nippon Suisan Gakkaishi 56:947951.Google Scholar
Helly, J., and Levin, L. 2004. Global distribution of naturally occurring marine hypoxia on continental margin. Deep-Sea Research Part I 51:11591168.Google Scholar
Hutchinson, J. J., and Trueman, C. N. 2006. Stable isotope analyses of collagen in fish scales: limitations set by scale architecture. Journal of Fish Biology 69:18741880.Google Scholar
Jahncke, J., Checkley, D. M., and Hunt, G. L. 2004. Trends in carbon flux to seabirds in the Peruvian upwelling system: effects of wind and fisheries on population regulation. Fisheries Oceanography 13:208223.Google Scholar
Krissek, L. A., and Scheidegger, K. F. 1983. Environmental controls on sediment texture and composition in low oxygen zones off Peru and Oregon. Pp. 163180 in Suess, E.and Thiede, J., eds. Coastal upwelling; its sediment record, Part B. Sedimentary records of ancient coastal upwelling. Plenum, New York.Google Scholar
Lozano-Montes, H. 1997. Reconstruction of marine fish populations using fossil fish scales deposited in Santa Barbara Basin (U.S.A.). M.S. thesis. Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico.Google Scholar
Mendo, J. 1991. Stock identification of Peruvian anchoveta (Engraulis ringens): morphometric, tagging/recapture, electrophoretic and ecological studies. Ph.D. thesis. University of Bremen, Germany.Google Scholar
O'Connell, J. M., and Tunnicliffe, V. 2001. The use of sedimentary fish remains for interpretation of long-term fish population fluctuations. Marine Geology 174:177195.Google Scholar
Ohwada, K., Tanaka, N., and Sugiyama, M. 1983. Penetration of microorganisms into deposited fish scales in the sediment of a coastal finfish culture grounds. Bulletin of the Japanese Society of Scientific Fisheries 49:657.Google Scholar
Reinhardt, L., K., H.-R., Lückge, A., Wiedicke, M., Wunderlich, J., and Wendt, G. 2002. High-resolution sediment echosounding off Peru: late Quaternary depositional sequences and sedimentary structures of a current-dominated shelf. Marine Geophysical Researches 23:335351.Google Scholar
Salvatteci, R. 2008. Preservation and abundance of fish debris in the oxygen minimum zone off Pisco, Peru in the last 400 years. M.S. thesis. Centro de Investigación y de Educación Superior de Ensenada, Ensenada, Mexico.Google Scholar
Sánchez, G., Calienes, R., and Zuta, S. 2000. The 1997–1998 El Niño and its effects on the coastal marine ecosystem off Peru. CalCOFI Report 41:6286.Google Scholar
Schenau, S. J., and De Lange, G. J. 2000. A novel chemical method to quantify fish debris in marine sediments. Limnology and Oceanography 45:963971.Google Scholar
Schwartzlose, R. A., Alheit, J., Bakun, A., Baumgartner, T. R., Cloete, R., Crawford, R. J. M., Fletcher, W. J., Green-Ruiz, Y., Hagen, E., Kawasaki, T., Lluch-Belda, D., Lluch-Cota, S. E., MacCall, A. D., Matsuura, Y., Nevarez-Martinez, M. O., Parrish, R. H., Roy, C., Serra, R., Shust, K. V., Ward, M. N., and Zuzunaga, J. Z. 1999. Worldwide large-scale fluctuations of sardine and anchovy populations. South African Journal of Marine Science 21:289347.Google Scholar
Shackleton, L. Y. 1988. Scale shedding: an important factor in fossil fish studies. ICES Journal of Marine Science 44:259263.Google Scholar
Shackleton, L. Y., and Johnson, R. F. 1988. Identification of and distinction between the scales of South African pilchard Sardinops ocellatus and Cape anchovy Engraulis capensis. South African Journal of Marine Science 6:207216.Google Scholar
Sifeddine, A., Gutierrez, D., Ortlieb, L., Boucher, H., Velazco, F., Field, D., Vargas, G., Boussafir, M., Salvatteci, R., Ferreira, V., García, M., Valdes, J., Caquineau, S., Mandeng-Yogo, M., Cetin, F., Solis, J., Soler, P., and Baumgartner, T. 2008. Laminated sediments from the central Peruvian continental slope: a 500 year record of upwelling system productivity, terrestrial runoff and redox conditions. Progress in Oceanography 79:190197.Google Scholar
Simon, A., Poulicek, M., Velimirov, B., and Mackenzie, F. T. 1994. Comparison of anaerobic and aerobic biodegradation of mineralized skeletal structures in marine and estuarine conditions. Biogeochemistry 25:167195.Google Scholar
Soutar, A., and Isaacs, J. 1974. Abundance of pelagic fish during the 19th and 20th century as recorded in anaerobic sediment off the Californias. Fisheries Bulletin 72:257273.Google Scholar
StatSoft, Inc. 2005. STATISTICA (data analysis software system), Version 7.1. www.statsoft.com.Google Scholar
Suess, E., Von Huene, R., Emeis, K., Bourgois, J., et al. 1990. Proceedings of the Ocean Drilling Program. Scientific Results 112:738.Google Scholar
Swartzman, G., Bertrand, A., Gutiérrez, M., Bertrand, S., and Vasquez, L. 2008. The relationship of anchovy and sardine to water masses in the Peruvian Humboldt Current System from 1983 to 2005. Progress in Oceanography 79:228237.Google Scholar
Valdes, J., Ortlieb, L., Gutierrez, D., Marinovic, L., Vargas, G., and Sifeddine, A. 2008. 250 years of sardine and anchovy scale deposition record in Mejillones Bay, northern Chile. Progress in Oceanography 79:198207.Google Scholar
Varma, K. B. R. 1990. Morphology and dielectric properties of fish scales. Current Science 59:420422.Google Scholar
Wright, C. A., Dallimore, A., Thomson, R. E., Patterson, R. T., and Ware, D. M. 2005. Late Holocene paleofish populations in Effingham Inlet, British Columbia, Canada. Paleogeography, Paleoclimatology, Palaeoecology 224:367384.Google Scholar