Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T19:07:42.820Z Has data issue: false hasContentIssue false

Evaluating Devonian bioregionalization: quantifying biogeographic areas

Published online by Cambridge University Press:  26 September 2019

Elizabeth M. Dowding
Affiliation:
Palaeontology Geobiology and Earth Archives Research Centre (PANGEA), School of Biological, Earth and Environmental Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia. E-mail: [email protected]
Malte C. Ebach
Affiliation:
Palaeontology, Geobiology and Earth Archives Research Centre (PANGEA), School of Biological, Earth and Environmental Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia. E-mail: [email protected]

Abstract

The work of Arthur J. Boucot (vale, 1924–2017) is foundational to Devonian biogeography. Cited more than 1000 times and mentioned in excess of 105,000 times, his classification of the Old World, Eastern Americas, and Malvinokaffric realms has become the framework for Devonian biogeographic and faunal studies. This study is the first to test and quantify the biotic area classification using the distributional data of trilobite, brachiopod, and fish taxa across the Lower, Middle, and Late Devonian. The biotic similarity analysis of 676 genera (ca. 30,000 occurrences) of late Silurian (Ludlow–Pridoli) and Devonian taxa represents the largest quantification of distributional data undertaken in Devonian biogeography. The temporal area approach (TAAp), applied here for the first time, failed to recover in the area phenogram many of the realms and regions used by Devonian biogeographers, excepting the Malvinokaffric realm, across the entirety of the Devonian. The Old World and Western Gondwana realms are found to be artificial and in need of revision. Without natural areas, bioregionalizations (area classifications) become unstable and unusable, resulting in authors creating further artificial regions and provinces. This study offers a better solution, namely, to identify artificial areas in existing area classifications using TAAp and biotic similarity analysis and revise them. Area classifications are modeled on taxonomic process (Wilson and Brown 1953; Starrett 1958) and the movement toward revision is necessary to break the cycle of reinvention of realms and regions within bioregionalization.

Type
Articles
Copyright
Copyright © The Paleontological Society. All rights reserved 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Data available from the Dryad Digital Repository:https://doi.org/10.5061/dryad.8mm06md

References

Literature Cited

Aboussalam, Z. R., and Becker, R. T.. 2011. The global Taghanic biocrisis (Givetian) in the eastern Anti-Atlas, Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology 304:136164.Google Scholar
Adrain, J. M., and Edgecombe, G. D.. 1996. Devonian Aulacopleurid trilobites of the Malvinokaffric realm. Geobios 29:417426.Google Scholar
Afanasieva, M. S., and Amon, E. O.. 2013. Paleobiogeographical radiolarian provinces in the Devonian. Paleontological Journal 47:11351154.Google Scholar
Alroy, J., Aberhan, M., Bottker, D. J., Foote, M., Fursich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnick, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bunuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nurnberg, S., Powers, C. M., Sessa, A., Simpson, J. C., Tomasovych, A., and Visaggi, C. C.. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.Google Scholar
Anstey, R. L., Pachut, J. F., and Tuckey, M. E.. 2003. Patterns of bryozoan endemism through the Ordovician–Silurian transition. Paleobiology 29:305328.Google Scholar
Baird, G. C., and Brett, C. E.. 2008. Late Givetian Taghanic bioevents in New York State: new discoveries and questions. Bulletin of Geosciences 84: 357370.Google Scholar
Bambach, R. K. 2006. Phanerozoic biodiversity mass extinctions. Annual Review of Earth and Planetary Sciences 34:127155.Google Scholar
Baselga, A., Jimenez-Valverde, A., and Niccolini, G.. 2007. A multiple-site similarity measure independent of richness. Biology Letters 3:642645.Google Scholar
Becker, G., Bless, M., and Theron, J. T.. 1994. Malvinokaffric ostracods from South Africa (Southern Cape; Bokkeveld Group, Devonian). Courier Forschunginstitut Senckenberg 169:239259.Google Scholar
Becker, R. T. 2000. Palaeobiogeographic relationships and diversity of Upper Devonian ammonoids from Western Australia. Records of the Western Australian Museum 58:385401.Google Scholar
Benedetto, J. L., and Sanchez, T. M.. 1996. The “Afro-South American Realm” and Silurian “Clarkeia” fauna. Pp. 2933 in Copper, P. and Jin, J. S., eds. Brachiopods. Balkema Press, New York.Google Scholar
Bigey, F. P. 1985. Biogeography of Devonian Bryozoa. Pp. 935 in Nielsen, C. and Larwood, G. P., eds. Bryozoa: Ordovician to Recent. Olsen and Olsen, Fredensborg.Google Scholar
Blodgett, R. B., Rohr, D. M., and Boucot, A. J.. 1990. Early and Middle Devonian gastropod biogeography. Geological Society of London Memoir 12:277284.Google Scholar
Blodgett, R. B., Fryda, J., and Lenz, A. C.. 2001. Semitubina yukonensis new species, first occurrence of this biogeographically distinctive Old World realm gastropod genus in the Lower Devonian of the western hemisphere. Journal of Paleontology 75:466470.Google Scholar
Bonelli, J. R., Brett, C. E., Miller, A. I., and Bennington, J. B.. 2006. Testing for faunal stability across a regional biotic transition: quantifying stasis and variation among coral-rich biofacies in the Middle Devonian Appalachian Basin. Paleobiology 32:2037.Google Scholar
Bonuso, N., Newton, C. R., Brower, J. C., and Ivany, L. C.. 2002. Statistical testing of community patterns: uppermost Hamilton Group, Middle Devonian (New York State: USA). Palaeogeography, Palaeoclimatology, Palaeoecology 185:124.Google Scholar
Bosetti, E. P., Grahn, Y., Horodyski, R. S., Mauller, P. M., Breuer, P., and Zabini, C.. 2011. An earliest Givetian “Lilliput Effect” in the Parana Basin, and the collapse of the Malvinokaffric shelly fauna. Palaontologische Zeitschrift 85:4965.Google Scholar
Boucot, A. J. 1974. Silurian and Devonian biogeography. Pp. 165176 in Ross, C. A., ed. Palaeogeographic provinces and provinciality: based on a symposium sponsored by the Society of Economic Paleontologists and Mineralogists. Society of Economic Paleontologists and Mineralogists, Tulsa, Okla.Google Scholar
Boucot, A. J. 1984. Old World realm (Rhenish–Bohemian region), shallow-water, Early Devonian brachiopods from the Jauf Formation of Saudi Arabia. Journal of Paleontology 58:11961202.Google Scholar
Boucot, A. J. 1985. Late Silurian—Early Devonian biogeography, provincialism, evolution and extinction [and discussion]. Philosophical Transactions of the Royal Society of London B 309:323339.Google Scholar
Boucot, A. J. 1988. Devonian biogeography: an update. Palaeontology, Palaeoecology and Biostratigraphy 3:211227.Google Scholar
Boucot, A. J., and Blodgett, R. B.. 2001. Silurian–Devonian biogeography. Pp. 335344 in Brunton, C. H., Cocks, L. R. M., and Long, S. L., eds. Brachiopods past and present. Taylor and Francis, London.Google Scholar
Boucot, A. J., and Gill, E. D.. 1956. Australocoelia a new Lower Devonian brachiopod from South Africa, South America, and Australia. Journal of Paleontology 30:11731178.Google Scholar
Boucot, A. J., Johnson, J. G., and Talent, J. A.. 1969. Early Devonian brachiopod zoogeography. Geological Society of America Special Paper 119:160.Google Scholar
Boucot, A. J., Brunton, C. H. C., and Theron, J. N.. 1983. Implications for the age of South African Devonian rocks in which Tropidoleptus (Brachiopoda) has been found. Geological Magazine 120:5158.Google Scholar
Boucot, A. J., Rowell, A. J., Racheboeuf, P. R., Pereira, E., De Melo, J. Henrique Goncalves, and De Siqueira, L. Peixoto. 2001. Position of the Malvinokaffric Realm's northern boundary (Early Devonian) based on newly discovered brachiopods from the Parecis Basin (Brasil). Journal of the Czech Geological Society 46:109120.Google Scholar
Brett, C. E., and Baird, G. C. 1995. Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian Basin. Pp. 285315 in Erwin, D. H. and Anstey, R. L., eds. New approaches to speciation in the fossil record. Columbia University Press, New York.Google Scholar
Burton, C. J., and Eldredge, N.. 1974. Two new subspecies of Phacops rana (Trilobita) from the Middle Devonian of North-West Africa. Palaeontology 17:349363Google Scholar
Cecca, F., and Westermann, G. E. G.. 2003. Towards a guide to palaeobiogeographic classification. Palaeogeography, Palaeoclimatology, Palaeoecology 201:179181.Google Scholar
Cocks, L. R. M. 2011. There's no place like home: Cambrian to Devonian brachiopods critically useful for analysing palaeogeography. Memoirs of the Association of Australasian Palaeontologists 41:135148.Google Scholar
Cooper, M. R. 1982. A revision of the Devonian (Emsian–Eifelian) trilobite from the Bokkeveld Group of South Africa. Annals of the South African Museum 89:1174.Google Scholar
Copper, P. 2002. Reef development at the Frasnian/Famennian mass extinction boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 181:2765.Google Scholar
de Melo, J. H. G. 1988. The Malvinokaffric realm in the Devonian of Brazil. Devonian of the World: Proceedings of the 2nd International Symposium on the Devonian System—Memoir 14:669709.Google Scholar
de Melo, J. H. G., and Boucot, A. J.. 1990. Harringtonina is Anabaia (Brachiopoda, Silurian, Malvinokaffric Realm). Journal of Paleontology 64:363366.Google Scholar
Di Pasquo, M., Noetinger, S., Isaacson, P., Grader, G., Starck, D., Morel, E., and Folnagy, A. H.. 2015. Mid-Late Devonian assemblages of herbaceous lycophytes from northern Argentina and Bolivia: age assessment with palynomorphs and invertebrates and palaeobiogeographic importance. Journal of South American Earth Sciences 63:7083.Google Scholar
DeSantis, M. K., and Brett, C. E.. 2011. Late Eifelian (Middle Devonian) biocrises: timing and signature of the pre- Kačák Bakoven and Stony Hollow events in eastern North America. Palaeogeography, Palaeoclimatology, Palaeoecology 304:113135.Google Scholar
Dowding, E. M., and Ebach, M. C.. 2016. The Early Devonian palaeobiogeography of Eastern Australasia. Palaeogeography, Palaeoclimatology, Palaeoecology 444:3947.Google Scholar
Dowding, E. M., and Ebach, M. C.. 2018. An interim global bioregionalistion of Devonian areas. Palaeobiodiversity and Palaeoenvironments 98:125.Google Scholar
Dowding, E. M., Ebach, M. C., and Mavrodiev, E. V.. 2018. Temporal area approach for distributional data in biogeography. Cladistics 35:435445.Google Scholar
Ebach, M. C., and Edgecombe, G. D.. 1999. The Devonian trilobite Cordania from Australia. Journal of Paleontology 73:431436.Google Scholar
Ebach, M. C., and Edgecombe, G. D.. 2001. Cladistic biogeography: component-based methods and paleontological application. Pp. 235289 in Adrian, J. M., Edgecombe, G. D., and Lieberman, B. S., eds. Fossils, phylogeny, and form. Springer, New York.Google Scholar
Ebach, M. C., and Michaux, B.. 2017. Establishing a framework for a natural area taxonomy. Acta Biotheoretica 65:167177.Google Scholar
Ebach, M. C., Humphries, C. J., Newman, R. A., Williams, D. M., and Walsh, S. A. 2005. Assumption 2: opaque to intuition? Journal of Biogeography 32:781787.Google Scholar
Ebach, M. C., Morrone, J. J., Parenti, L. R., and Viloria, A. L.. 2008. International Code of Area Nomenclature. Journal of Biogeography 35:11531157.Google Scholar
Eichholt, S., and Becker, R. T.. 2016. Middle Devonian reef facies and development in the Oued Cherrat Zone and adjacent regions (Moroccan Meseta). Facies 62:7.Google Scholar
Eldredge, N., and Ormiston, A. R.. 1979. Biogeography of the Silurian and Devonian trilobites of the Devonian trilobites of the Malvinokaffric Realm. Pp. 147167 in Gray, J. and Boucot, A. J., eds. Historical biogeography, plate tectonics and the changing environment. Oregon State University Press, Corvallis.Google Scholar
Feist, R. 1991. Late Devonian trilobite crises. Historical Biology 5:197214.Google Scholar
Feist, R., and Becker, R. T.. 1997. Discovery of Famennian trilobites in Australia (Late Devonian, Canning Basin, NW Australia). Geobios 20:231242.Google Scholar
Ferrari, A. 2017. Biogeographical units matter. Australian Systematic Botany 30:391402.Google Scholar
Ferro, I., and Morrone, J. J.. 2014. Biogeographical transition zones: a search for conceptual synthesis. Biological Journal of the Linnean Society of London 113:112.Google Scholar
Grahn, Y. 2005. Devonian chitinozoan biozones of Western Gondwana. Acta Geologica Polonica 55:211227.Google Scholar
Goloboff, P. A., and Catalano, S.. 2016. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32:221238.Google Scholar
Hallam, A. 1994. An outline of Phanerozoic biogeography. Oxford biogeographic series 10. Oxford University Press, Oxford.Google Scholar
Haq, B. U., and Schutter, S. R.. 2008. A chronology of Palaeozoic sea-level changes. Science 322:6468.Google Scholar
Hiller, N. 1990. Benthic communities and sedimentary facies in the lower Witteberg Group (Devonian, South Africa). Annals of the South African Museum 99:215230.Google Scholar
Holloway, D. J., and Rustan, J. J.. 2012. The trilobite Reedops (Phacopidae) in the Lower Devonian of Argentina (Malvinokaffric Realm). Journal of Paleontology 82:253257.Google Scholar
House, M. R. 1996. The Middle Devonian Kačák Event. Proceedings of the USSHER Society 9:7984.Google Scholar
House, M. R. 2002. Strength, timing, setting and cause of mid-Palaeozoic extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology 181:525.Google Scholar
House, M. R., and Kerr, W. A.. 1989. Ammonoid extinction events. Philosophical Transactions of the Royal Society of London B 325:307326.Google Scholar
Isaacson, P. E. 1977a. Devonian stratigraphy and brachiopod paleontology of Bolivia. Part A: Orthida and Strophomenida. Palaeontographica 155:133192.Google Scholar
Isaacson, P. E. 1977b. Devonian stratigraphy and brachiopod paleontology of Bolivia. Part B: Spiriferida and Terebratulida. Palaeontographica 156:168217.Google Scholar
Isaacson, P. E., and Perry, D. G.. 1977. Biogeography and morphological conservatism of Tropidoleptus (Brachiopoda, Orthida). Journal of Paleontology 51:11081122.Google Scholar
Isaacson, P. E., and Sablock, P. E.. 1990. Devonian palaeogeography of the Central Andes. Geological Society of London Memoir 12:431435.Google Scholar
Issacson, P., Diaz-Marinez, E., Grader, G., Kaldova, J., Babek, O., and Deyust, F.. 2008. Late Devonian–earliest Mississippian glaciation in Gondwanaland and its biogeographic consequences. Palaeogeography, Palaeoclimatology, Palaeoecology 268:126142.Google Scholar
Johnson, J. G. 1970. Taghanic onlap and the end of North American Devonian provinciality. Geological Society of America Bulletin 81:20772106.Google Scholar
Johnson, J. G., Klapper, G., and Sandberg, C. A.. 1985. Devonian eustatic fluctuations in Euramerica. Geological Society of America Bulletin 96:567587.Google Scholar
Johnson, J. G., Klapper, G., and Sandberg, C. A.. 1986. Late Devonian eustatic cycles around margin of Old Red Continent. Annales de la Societe geologique de Belgique 109:141147.Google Scholar
Johnson, K. G. 1992. Population dynamics of a free-living coral: recruitment, growth and survivorship of Manicina areolata (Linnaeus) on the Caribbean coast of Panama. Journal of Experimental Marine Biology and Ecology 164:171191.Google Scholar
Jurina, A. L. and Raskatova, M. G.. 2011. Response of Higher Plants to the Devonian Kačák event (Czech Republic). Moscow University Geology Bulletin 66:3744.Google Scholar
Kobayashi, T., and Hamada, T.. 1975. Devonian Trilobite Provinces. Proceedings of the Japan Academy 51:447451.Google Scholar
Koch, W. F., and Boucot, A. J.. 1982. Temperature fluctuations in the Devonian Eastern Americas Realm. Journal of Paleontology 56:240243.Google Scholar
Lebedev, O. A., and Zakharenko, G. V.. 2010. Global vertebrate-based palaeozoogeographical subdivision for the Givetian–Famennian (Middle–Late Devonian): Endemism–cosmopolitanism spectrum as an indicator of interprovincial faunal exchanges. Palaeoworld 19:186205.Google Scholar
Lerosey-Aubril, R., and Feist, R.. 2000. Quantitative approach to diversity and decline in late Palaeozoic trilobites. Pp. 535556 in Talent, J. A., ed. Earth and life: global biodiversity, extinction intervals and biogeographic perturbations through time. Springer, New York.Google Scholar
Lethiers, F., Racheboeuf, P. R., Baudin, F., and Vaccari, E.. 2001. A typical Malvinokaffric Givetian ostracod fauna from Bolivia. Revue de Micropaléontologie 44:301317.Google Scholar
Lewthwaite, J. M. M., Debinski, D. M., and Kerr, J. T.. 2017. High community turnover and dispersal limitation relative to rapid climate change. Global Ecology and Biogeography 26:459471.Google Scholar
Li, R.-U. 2010. Middle Devonian brachiopods from Arctic Canada and some preliminary results of North American biogeography based on quantitative assessment. Journal of Earth Science 21:3639.Google Scholar
Lieberman, B. S. 2005. Geobiology and paleobiogeography: tracking the coevolution of the Earth and its biota. Palaeogeography, Palaeoclimatology, Palaeoecology 219:2333.Google Scholar
Lieberman, B. S. 2012. Adaptive radiations in the context of macroevolutionary theory: a palaeontological perspective. Evolutionary Biology 39:181191.Google Scholar
Lieberman, B. S., and Eldredge, N.. 1996. Trilobite biogeography in the Middle Devonian: geological processes and analytical methods. Paleobiology 22:6679.Google Scholar
Lieberman, B. S., and Kloc, K.. 1997. Evolutionary and biogeographic patterns in the Asteropyginae (Trilobita, Devonian). Bulletin of the American Museum of Natural History 232:1127.Google Scholar
Lindler, H. P. 2001. On areas of endemism, with an example from the African Restionaceae. Systematic Biology 50:892912.Google Scholar
Meyerhoff, A. A., Boucot, A. J., Meyerhoff Hull, D., and Dickins, J. M.. 1996. Phanerozoic faunal and floral realms of the Earth: the intercalary relations of the Malvinokaffric and Gondwana faunal realms with the Tethyan faunal realm. Geological Society of America, Boulder, Colo.Google Scholar
Nance, R. D., Gutiérrez-Alonso, G., Keppie, J. D., and Linnemann, U.. 2012. A brief history of the Rheic Ocean. Geoscience Frontiers 3:125135.Google Scholar
Nie, X., Feng, Q., Metcalfe, I., Baxter, A. T., and Liu, G.. 2016. Discovery of a Late Devonian magmatic arc in the southern Lancangjian zone, western Yunnan: geochemical and zircon U-Pb geochronological constrains on the evolution of Tethyan ocean basins in SW China. Journal of Asian Earth Sciences 118:3250.Google Scholar
Oliver, W. A. 1977. Biogeography of Late Silurian and Devonian rugose corals. Palaeogeography, Palaeoclimatology, Palaeoecology 22:85135.Google Scholar
Oliver, W. A. 1990. Extinctions and migrations of Devonian rugose corals in the Eastern Americas realm. Lethaia 23:167178.Google Scholar
Oliver, W. A., Sorauf, J. E., and Brett, C. E.. 1996. A unique occurrence of Endophyllum (Rugose coral: Devonian) in eastern North America: an ecological and biogeographical puzzle. Journal of Paleontology 70:4656.Google Scholar
Parenti, L. R., and Ebach, M. C.. 2009. Comparative biogeography: discovering and classifying biogeographical patterns of a dynamic earth. University of California Press, London.Google Scholar
Pedder, A. E. H., and Murphy, M. A.. 2004. Emsian (Lower Devonian) rugosa of Nevada: revision of systematics and stratigraphic ranges, and reassessment of faunal provincialism. Journal of Paleontology 75:838865.Google Scholar
Penn-Clarke, C. R., Rubidge, B. S., and Jinnah, Z. A.. 2018. Two hundred years of palaeontological discovery: review of research on the Early to Middle Devonian Bokkeveld Group (Cape Supergroup) of South Africa. Journal of African Earth Sciences 137:157178.Google Scholar
Platnick, N. I., and Nelson, G.. 1978. A method of analysis for historical biogeography. Systematic Zoology 27:116.Google Scholar
Playton, T. E., Kerans, C., Hocking, R. M., Haines, P. W., Adams, E. W., Hurley, N. F., and Frost, E. L.. 2017. Excursions along the Lennard Shelf Devonian carbonates, Canning Basin, Western Australia. AAPG Bulletin 104:495503.Google Scholar
Racheboeuf, P. R., Le Herisse, A., Paris, F., Babin, C., Guillocheau, F., and Truyols-Massoni, M.. 1993. The Devonian of Bolivia: bio and chronostratigraphy. Bulletin—Institut Francais d'Etudes Andines 22:645655.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.Google Scholar
Rode, A. L., and Lieberman, B. S. 2005. Paleobiogeographic patterns in the Middle and Late Devonian emphasizing Laurentia. Palaeogeography, Palaeoclimatology, Palaeoecology 222:272284.Google Scholar
Rosen, B. R. 1988a. From fossils to Earth history: applied historical biogeography. Pp. 437481 in Myers, A. A. and Giller, P. S., eds. Analytical biogeography: an integrated approach to the study of animal and plant distributions. Chapman and Hall, New York.Google Scholar
Rosen, B. R. 1988b. Progress, problems and patterns in the biogeography of reef corals and other marine organisms. Helgolander Meeresunters 42:269301.Google Scholar
Rosen, B. R., and Smith, A. B.. 1988. Tectonics from fossils? Analysis of reef-coral and sea-urchin distributions from late Cretaceous to Recent, using a new method. Geological Society of London 37:275306.Google Scholar
Salas, M. J., Rustan, J. J., and Sterren, A. F.. 2013. Lower and Middle Devonian Malvinokaffric ostracods from the Precordillera Basin of San Juan, Argentina. Journal of South American Earth Sciences 45:5668.Google Scholar
Sallan, L. C., and Coates, M. I.. 2010. End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates. Proceedings of the National Academy of Sciences USA 107:1013110135.Google Scholar
Sandford, A. C. 2000. Trilobite faunas and palaeoenvironmental setting of the Silurian (early Ludlow) Melbourne Formation, central Victoria. Alcheringa 24:153206.Google Scholar
Sclater, P. L. 1858. On the general geographical distribution of the members of the class Aves. Proceedings of the Linnean Society, London 2:130136.Google Scholar
Sedorko, D., Netto, R. G., and Savrda, C. E.. 2018. Ichnology applied to sequence stratigraphic analysis of Siluro-Devonian mud-dominated shelf deposits, Parana Basin, Brazil. Journal of South American Earth Sciences 83:8195.Google Scholar
Servais, T., Cecca, F., Harper, D. A. T., Isozaki, Y., and Niocaill, C. M.. 2013. Palaeozoic palaeogeographical and palaeobiogeographical nomenclature. Pp. 2534 in Harper, D. A. T. and Servais, T., eds. Early Palaeozic biogeography and palaeogeography. Geological Society, London.Google Scholar
Shen, Z., Song, J., Servais, T., and Gong, Y.. 2018. Late Devonian palaeobiogeography of marine organic-walled phytoplankton. Palaeogeography, Palaeoclimatology, Palaeoecology. doi: 10.1016/j.palaeo.2018.03.018.Google Scholar
Stanley, M.S., and Powell, M.G.. 2003. Depressed rates of origination and extinction during the late Palaeozoic ice age: a new state for the global marine ecosystem. Geology 31:877880.Google Scholar
Starrett, A. 1958. What is the subspecies problem? Systematic Zoology 7:111115.Google Scholar
Stock, C. W. 2005. Devonian stromatoporoid originations, extinctions, and palaeobiogeography: how they relate to the Frasnian-Famennian extinction. Pp. 7192 in Over, D. J., Morrow, J. R., and Wignall, P. B., eds. Understanding Late Devonian and Permian–Triassic biotic and climatic events: towards an integrated approach. Elsevier, New York.Google Scholar
Szumik, C., Pereyra, V. V., and Casagranda, M. D.. 2019. Areas of endemism: to overlap or not to overlap, that is the question. Cladistics 35:198229.Google Scholar
Troth, I., Marshall, J. E. A., Racey, A., and Becker, R. T.. 2011. Devonian sea-level change in Bolivia: a high palaeolatitude biostratigraphical calibration of the global sea-level curve. Palaeogeography, Palaeoclimatology, Palaeoecology 304:3–2.Google Scholar
Tulipani, S., Grice, K., Greenwood, P. F., Haines, P. W., Sauer, P. E., Schimmelmann, A., Summons, R. E., Foster, C. B., Bottcher, M. E., Playton, T. E., and Schwark, L.. 2015. Changes of palaeoenvironmental conditions recorded in Late Devonian reef systems from the Canning Basin, Western Australia: a biomarker and stable isotope approach. Gondwana Research 28:15001500.Google Scholar
Upchurch, P., Hunn, C. A., and Normal, D. B.. 2002. An analysis of Dinosaurian biogeography: evidence for the existence of vicariance and dispersal patterns caused by geological events. Proceedings of the Royal Society of London B 269:613621.Google Scholar
Wallace, A. R. 1876. The geographical distribution of animals: with a study of the relations of living and extinct faunas as elucidating the past changes of the Earth's surface. 2 vols. Macmillan and Co., London.Google Scholar
Wiley, E. O., and Lieberman, B. S.. 2011. Phylogenetics, 2nd ed. Wiley, New York.Google Scholar
Wilson, E. O., and Brown, W. L.. 1953. The subspecies concept and its taxonomic application. Systematic Zoology 2:97111.Google Scholar
Wood, R. 2000. Novel paleoecology of post extinction reef: Famennian (Late Devonian) of the Canning Basin, northwestern Australia. Geology 28:987990.Google Scholar
Young, G. C. 1981. New Early Devonian brachythoracids (placoderm fishes) from the Taemas- Wee Jasper region of New South Wales. Alcheringa: An Australasian Journal of Palaeontology 5:245271.Google Scholar
Young, G. C. 1987. Devonian palaeontological data and the Armorica problem. Palaeogeography, Palaeoclimatology, Palaeoecology 60:283304.Google Scholar
Young, G. C. 2003. North Gondwana mid-Palaeozoic connections with Euramerica and Asia: Devonian vertebrate evidence. Courier Forschungsinstitut Senckenberg 242:16185.Google Scholar
Young, G. C. 2010. Placoderm (armoured fish): dominant vertebrates of the Devonian period. Annual Review of Earth and Planetary Sciences 38:523550.Google Scholar
Young, G. C., Burrow, C. J., Long, J. A., Turner, S., and Choo, B.. 2010. Devonian macrovertebrate assemblages and biogeography of East Gondwana (Australasia, Antarctica). Palaeoworld 19:5574.Google Scholar
Zambito, J. J., Brett, C. E., and Baird, G. C.. 2012. The late Middle Devonian (Givetian) global Taghanic biocrisis in its type area (Northern Appalachian Basin): geologically rapid faunal transitions driven by global and local environmental changes. Pp. 677704 in Talent, J. A., ed. Earth and life: global biodiversity, extinction intervals and biogeographic perturbations through time. International Year of Planet Earth. Springer, New York.Google Scholar
Zong, P., Becker, R. T., and Ma, X. P.. 2015. Upper Devonian (Famennian) and Lower Carboniferous (Tournaisian) ammonoids from western Junggar, Xinjiang, north-western China—stratigraphy, taxonomy and palaeobiogeography. Palaeobiodiversity and Palaeoenvironments 95:159202.Google Scholar