Article contents
Eocene echinoids, the Suwannee Strait, and biogeographic taphonomy
Published online by Cambridge University Press: 08 February 2016
Abstract
Faunal similarity among regions is often used as a means of identifying regions of endemism in fossil faunas. At least two large-scale taphonomic effects can affect apparent faunal similarity: stratigraphic and facies mismatching. In stratigraphic mismatching, an unconformity represents removal of most or all of a complete assemblage zone in one region, and the constituent taxa are mistakenly interpreted as having never inhabited that region. In facies mismatching, environmental differences between two regions (possibly unrecognized) cause the inference of a barrier that never existed. The two types of mismatching can work in concert if a facies was originally represented in a single stratigraphic interval that has been completely removed from one region. Analysis of faunal similarity via multivariate analysis of individual localities, coupled with comparison of the regions as single samples, may indicate mismatching if the results differ significantly.
We view these two problems as part of a suite of taphonomic effects that are not evident in paleobiological analyses of smaller geographic scope. First, there is ambiguity in the notion of “barrier,” even when a candidate is obvious. Second, barriers in paleobiogeography are often hidden and must be inferred from their effects rather than observed. Third, stratigraphic and facies mismatching produce effects on regional faunas similar to those produced by barriers. Anyone using barriers to explain faunal disruptions should address these three points.
Upper Eocene faunas of central Florida seem taxonomically distinct from those of the remainder of the Gulf Coastal Plain. This has historically been attributed to a known paleogeographic feature, the Suwannee Strait, which acts as a barrier. The amount of dissimilarity of the echinoid faunas is greater than the amount predicted as a result of sampling problems. Comparison of the results of multivariate and whole-region analyses suggests that mismatching of the two faunas, rather than a true barrier, causes the distinction. Principally facies, but also strata are mismatched. Early Late Eocene faunas inhabited terrigenous sands to the north of the strait and carbonate sands to the south and show the highest distinctiveness. Middle Late Eocene faunas inhabited primarily carbonate sands to the south and both carbonate sands and muds to the north. Overall similarity is higher for both local and regional analyses, and the faunas of northern sands are more similar to those of the southern region than to the northern mud faunas. Overall similarity across the strait is highest in the late Late Eocene strata when both regions had carbonate mud and sand facies. The faunas exhibit greater similarity within facies than they do within regions. Upper Late Eocene strata are poorly preserved north of the strait because of post-Eocene erosion.
- Type
- Articles
- Information
- Copyright
- Copyright © The Paleontological Society
References
Literature Cited
- 9
- Cited by