Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T11:23:44.277Z Has data issue: false hasContentIssue false

Environmentally driven variation in ancient populations of turritellids: evaluating the causal link

Published online by Cambridge University Press:  08 April 2016

Kristin P. Teusch*
Affiliation:
Field of Zoology, Vet Research Tower, Cornell University, Ithaca, New York 14853. E-mail: [email protected]
Robert Guralnick
Affiliation:
University of Colorado Museum and EPO Biology, University of Colorado at Boulder, Boulder, Colorado 80309
*
*Corresponding author. Present address: 44 Essex Street, Marlborough, Massachusetts 01752

Abstract

Understanding the response of a species or lineage to long-term environmental change is a critical aspect of evolutionary paleoecology. In order to do this, paleobiologists must have an excellent fossil record of a lineage and an independent source of environmental data in the same region. This situation occurs in the San Pedro area of southern California, where relatively new paleotemperature and paleoproductivity records enhance the well-known fossil gastropod record. We quantified shell morphology of late Pleistocene and Recent turritellid gastropods from this area and compared the timing of changes with temperature and productivity reconstructions for the region. Our results indicate that warm temperatures and moderate to high productivity are associated with larger shells and wider whorls. Cold temperatures and lower productivity are associated with smaller, narrower shells. We propose that warm temperatures and moderate productivity result in higher growth rates in turritellid gastropods. Our work also suggests that below a certain threshold temperature, productivity appears to have no influence on shell morphology. In other words, growth rate is unaffected by high productivity unless average temperatures are above a certain level. These results are consistent with models of shell deposition and with experimental results from living gastropods and bivalves reported in the literature.

Type
Articles
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allmon, W. D. 1988. Ecology of Recent turritelline gastropods (Prosobranchia, Turritellidae): current knowledge and paleontological implications. Palaios 3:259284.Google Scholar
Allmon, W. D. 1992. Role of temperature and nutrients in extinction of turritelline gastropods: Cenozoic of the northwestern Atlantic and northeastern Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology 92:4154.Google Scholar
Allmon, W. D. 1994. Patterns and processes of heterochrony in lower Tertiary turritelline gastropods, U.S. Gulf and Atlantic coastal plains. Journal of Paleontology 68:8095.Google Scholar
Allmon, W. D., Nieh, J. C., and Norris, R. D. 1990. Drilling and peeling of turritelline gastropods since the late Cretaceous. Palaeontology 33:595611.Google Scholar
Allmon, W. D., Jones, D. S., and Polizzotto, K. 1997. Evolution and environment in a time of global change: Turritella cingulata-cingulatiformis (Gastropoda) from the Pliocene-Recent of Chile. Geological Society of America Abstracts with Programs 29(7):A405.Google Scholar
Allmon, W. D., and Ross, R. M. 2001. Nutrients and evolution in the marine realm. Pp. 105148in Allmon, W. D. and Bottjer, D. J., eds. Evolutionary paleoecology. Columbia University Press, New York.Google Scholar
Andreason, D. H., Flower, M., Harvey, M., Chang, S., and Ravelo, A. C. 2000. Data report: late Pleistocene oxygen and carbon isotopic records from sites 1011, 1012, and 1018. Pp. 141144in Lyle, et al. 2000.Google Scholar
Andrews, H. E. 1974. Morphometrics and functional morphology of Turritella mortoni. Journal of Paleontology 48:11261140.Google Scholar
Archambault, P., McKindsey, C. W., and Bourget, E. 1999. Largescale shoreline configuration influences phytoplankton and mussel growth. Estuarine Coastal and Shelf Science 49:193208.Google Scholar
Bauer, G. 1992. Variation in the life span and size of the freshwater pearl mussel. Journal of Animal Ecology 61:425436.Google Scholar
Bayne, B. L., and Newell, R. C. 1983. Physiological energetics of marine molluscs. Pp. 407515in Saleuddin, A. S. M. and Wilbur, K. M., eds. The Mollusca, Vol. 4. Physiology, Part 1. Academic Press, New York.Google Scholar
Berelson, W. M., Hammond, D. E., and Johnson, K. S. 1987. Benthic fluxes and the cycling of biogenic silica and carbon in two southern California Borderland basins. Geochimica et Cosmochimica Acta 51:13451363.Google Scholar
Berger, W. H., Smetacek, V. S., and Wefer, G., eds. 1989a. Productivity of the ocean: present and past. Wiley, Chichester, England.Google Scholar
Berger, W. H., Smetacek, V. S., and Wefer, G. 1989b. Ocean productivity and paleoproductivity: an overview. Pp. 134in Berger, et al. 1989a.Google Scholar
Bergeron, P. 1992. Evaluation of the production parameters and potential of the Tracadigash Bay Chaleur Bay for the cultivation of blue mussels on floating culture lines. Quebec Ministère de l'Agriculture des Pecheries et de l'Alimentation Direction de la Recherche Scientifique et Technique Cahier d'Information 0(129) I–VIII:165.Google Scholar
Brown, K. M., DeVries, D. R., and Leathers, B. K. 1985. Causes of life history variation in the freshwater snail Lymnaea elodes. Malacologia 26:191200.Google Scholar
Bruland, K. W., Bienfang, P. K., Bishop, J. K. B., Eglinton, G., Ittekkot, V. A. W., Lampitt, R., Sarnthein, M., Thiede, J., Walsh, J. J., and Wefer, G. 1989. Group report: flux to the sea floor. Pp. 193215in Berger, et al. 1989a.Google Scholar
Byrne, R. A., Reynolds, J. D., and McMahon, R. F. 1989. Shell growth, reproduction and life cycles of Lymnaea peregra and L. palustris (Pulmonata: Bassommatophora) in oligotrophic furloughs (temporary lakes) in Ireland. Journal of Zoology 217:321339.Google Scholar
Cigarria, J. 1999. Effects of age, size, and season on growth of soft tissue in the oyster Crassostrea gigas (Thunberg, 1783). Journal of Shellfish Research 18:127131.Google Scholar
Delaney, M. L., and Anderson, L. D. 2000. Data report: phosphorus concentrations and geochemistry in California margin sediments. Pp. 195202in Lyle, et al. 2000.Google Scholar
Gabbott, P. A. 1983. Developmental and seasonal metabolic activities in marine molluscs. Pp. 165217in Hochachka, P. W., ed. The Mollusca, Vol. 4. Environmental biochemistry and physiology. Academic Press, New York.Google Scholar
Goodfriend, G. A. 1992. The use of land snail shells in paleoenvironmental reconstruction. Quaternary Science Reviews 11:665685.Google Scholar
Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biological Reviews 41:587640.Google Scholar
Hagadorn, J. W., and Boyajian, G. E. 1997. Subtle changes in mature predator-prey systems: an example from Neogene Turritella (Gastropoda). Palaios 12:372379.Google Scholar
Hendy, I. L., and Kennett, J. P. 2000a. Dansgaard-Oeschger cycles and the California Current System: planktonic foraminiferal response to rapid climate change in Santa Barbara Basin, Ocean Drilling Program hole 893A. Paleoceanography 15:3042.Google Scholar
Hendy, I. L., and Kennett, J. P. 2000b. Stable isotope stratigraphy and paleoceanography of the last 170 k.y.: Site 1014, Tanner Basin, California. Pp. 129140in Lyle, et al. 2000.Google Scholar
Herbert, T. D., Yasuda, M., and Burnett, C. 1995. Glacial-inter-glacial sea-surface temperature record inferred from alkenone unsaturation indices, Site 893, Santa Barbara Basin. Pp. 257264in Kennett, et al. 1995.Google Scholar
Ingle, J. C. 1967. Foraminiferal biofacies variation and the Miocene-Pliocene boundary in southern California. Bulletins of American Paleontology 52(236).Google Scholar
Janecek, T. R. 2000. Data report: late Neogene biogenic opal data for Leg 167 sites on the California margin. Pp. 213216in Lyle, et al. 2000.Google Scholar
Jokela, J. 1996. Within-season reproductive and somatic energy allocation in a freshwater clam, Anodonta piscinalis. Oecologia 105:167174.Google Scholar
Jones, T. O., and Iwama, G. K. 1991. Polyculture of the Pacific oyster Crassostrea gigas Thunberg with Chinook salmon Oncorhynchus tshawytscha. Aquaculture 92:313322.Google Scholar
Kamermans, P. 1993. Food limitation in cockles (Cerastoderma edule (L.)): influences of location on tidal flat and of nearby presence of mussel beds. Netherlands Journal of Sea Research 31:7181.Google Scholar
Kennett, J. P. 1995. Latest Quaternary benthic oxygen and carbon isotope stratigraphy: hole 893A, Santa Barbara Basin, California. Pp. 318in Kennett, et al. 1995.Google Scholar
Kennett, J. P., and Venz, K. 1995. Late Quaternary climatically related planktonic foraminiferal assemblage changes: hole 893A, Santa Barbara Basin, California. Pp. 281293in Kennett, et al. 1995.Google Scholar
Kennett, J. P., Baldauf, J. G., and Lyle, M. 1995. Proceedings of the Ocean Drilling Program, Scientific Results, Leg 146. Ocean Drilling Program, College Station, Tex.Google Scholar
Kirby, M. X. 2000. Paleoecological differences between Tertiary and Quaternary Crassostrea oysters, as revealed by stable isotope sclerochronology. Palaios 15:132141.Google Scholar
Kirby, M. X., Soniat, T. M., and Spero, H. J. 1998. Stable isotope sclerochronology of Pleistocene and Recent oyster shells (Crassostrea virginica). Palaios 13:560569.Google Scholar
Klingenberg, C. P., and Zimmermann, M. 1992. Static, ontogenetic, and evolutionary allometry: a multivariate comparison in nine species of water striders. American Naturalist 140:601620.Google Scholar
Lewis, D. E., and Cerrato, R. M. 1997. Growth uncoupling and the relationship between shell growth and metabolism in the soft shell clam Mya arenaria. Marine Ecology Progress Series 158:177189.Google Scholar
Lodeiros, C. J., Rengel, J. J., Freites, L., Morales, F., and Himmelman, J. H. 1998. Growth and survival of the tropical scallop Lyropecten (Nodipecten) nodosus maintained in suspended culture at three depths. Aquaculture 165:4150.Google Scholar
Lohmann, G. P., and Schweitzer, P. N. 1990. On eigenshape analysis: In Rohlf, F. J. and Bookstein, F. L., eds. Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology Special Publication 2:147166.Google Scholar
Lyle, M. W., Zahn, R., Prahl, F., Dymond, J., Collier, R., Pisias, N., and Suess, E. 1992b. Paleoproductivity and carbon burial across the California Current: the Multitracers transect, 42°N. Paleoceanography 7:251272.Google Scholar
Lyle, M., Koizumi, I., Richter, C., et al. 1997. Proceedings of the Ocean Drilling Program, Initial Reports, Leg 167. Ocean Drilling Program, College Station, Tex. [Online.] Available from World Wide Web: http://www-odp.tamu.edu/publications/167_IR/.Cited2000-12-01.Google Scholar
Lyle, M., Koizumi, I., Richter, C., and Moore, T. C. Jr. 2000. Proceedings of the Ocean Drilling Program, Scientific Results, Leg 167. Ocean Drilling Program, College Station, Tex.Google Scholar
MacLeod, N. 1999. Generalizing and extending the eigenshape method of shape space visualization and analysis. Paleobiology 25:107138.Google Scholar
Marincovich, L. Jr. 1976. Late Pleistocene molluscan faunas from upper terraces of the Palos Verdes Hills, California. Contributions in Science, Los Angeles County Museum of Natural History 281:128.Google Scholar
Marwick, J. 1957. New Zealand genera of Turritellidae, and the species of Stiracolpus. New Zealand Geological Survey Paleontological Bulletin 27:155.Google Scholar
Maslin, M., Ettwein, V., Ewan, L., Rosell-Mele, A., Stickley, C., and Vidal, L. 1999. Fluctuations in the upwelling intensity and and productivity of the Beguela Current system during the intensification of northern hemisphere glaciation (2.4–2.6 Ma). Transactions of the American Geophysical Union 80:F589.Google Scholar
McKinney, M. L. 1984. Allometry and heterochrony in an Eocene echinoid lineage: morphological change as a byproduct of size selection. Paleobiology 10:407419.Google Scholar
Merriam, C. W. 1941. Fossil turritellas from the Pacific coast region of North America. University of California Publications, Bulletin of the Department of Geological Sciences 26(1).Google Scholar
Mix, A. C. 1989. Pleistocene paleoproductivity: evidence from organic carbon and foraminiferal species. Pp. 313340in Berger, at al. 1989a.Google Scholar
Muhs, D. R., and Kyser, T. K. 1987. Stable isotope compositions of fossil mollusks from southern California: evidence for a cool last interglacial ocean. Geology 15:119122.Google Scholar
Neter, J., Kutner, M., Nachtsheim, C., and Wasserman, W. 1996. Applied linear statistical models. Irwin, Chicago.Google Scholar
Ott, R. L. 1993. An introduction to statistical methods and data analysis, 4th ed.Wadsworth, Belmont, Calif.Google Scholar
Park, M. S., Lim, H. J., and Kim, P. J. 1998. Effect of environmental factors on the growth, glycogen and hemoglobin content of cultured arkshell Scapharca broughtonii. Journal of the Korean Fisheries Society 31:176185.Google Scholar
Pilditch, C. A., and Grant, J. 1999. Effect of temperature fluctuations and food supply on the growth and metabolism of juvenile sea scallops (Placopecten magellanicus). Marine Biology 134:235248.Google Scholar
Pouvreau, S., Tiapari, J., Gangnery, A., Lagarde, F., Garnier, M., and Teissier, H. 2000. Growth of the black-lip pearl oyster, Pinctada margaritifera, in suspended culture under hydrobiological conditions of Takapoto lagoon (French Polynesia). Aquaculture 184:133154.Google Scholar
Sato, S. 1999. Temporal change of life-history traits in fossil bivalves: an example of Phacosoma japonicum from the Pleistocene of Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 154:313323.Google Scholar
Signor, P. W. 1982. Evolution of life habits using multiple morphologic criteria: shell form and life-mode in turritelliform gastropods. Paleobiology 8:378388.Google Scholar
Soutar, A., Johnson, S. R., and Baumgartner, T. R. 1981. In search of modern depositional analogs to the Monterey Formation. Pp. 123147in Garrison, R. E. and Douglas, R. G., eds. The Monterey Formation and related siliceous rocks of California. Society of Economic Paleontologists and Mineralogists, Los Angeles.Google Scholar
Teusch, K. P., Jones, D. S., and Allmon, W. D. 2002. Morphological variation in turritellid gastropods from the Pleistocene to recent of Chile: association with upwelling intensity. Palaios 17:366377.Google Scholar
Thouzeau, G., Robert, G., and Smith, S. J. 1991. Spatial variability in distribution and growth of juvenile and adult sea scallops Placopecten magellanicus Gmelin on eastern Georges Bank, northwest Atlantic. Marine Ecology Progress Series 74:205218.Google Scholar
Tull, D. S., and Bohning-Gaese, K. 1993. Patterns of drilling predation on gastropods of the family Turritellidae in the Gulf of California. Paleobiology 19:476486.Google Scholar
Valentine, J. W. 1962. The search for Turritella jewetti Carpenter. Veliger 5:35.Google Scholar
Valentine, J. W., and Meade, R. F. 1961. Californian Pleistocene paleotemperatures. University of California Publications in Geological Sciences 40:146.Google Scholar
Vermeij, G. J. 1990. Tropical Pacific pelecypods and productivity: a hypothesis. Bulletin of Marine Science 47:6267.Google Scholar
Watabe, N. 1983. Shell repair. Pp. 289316in Saleuddin, A. S. M. and Wilbur, K. M., eds. The Mollusca, Physiology Part 1, Vol. 4. Academic Press, New York.Google Scholar
Witbaard, R., Jenness, M. I., Van Der Borg, K., and Ganssen, G. 1994. Verification of annual growth increments in Arctica islandica L. from the North Sea by means of oxygen and carbon isotopes. Netherlands Journal of Sea Research 33:91101.Google Scholar
Witbaard, R., Franken, R., and Visser, B. 1997. Growth of juvenile Arctica islandica under experimental conditions. Helgolaender Meeresuntersuchungen 51:417431.Google Scholar
Witbaard, R., Duieveld, G. C. A., and de Wilde, P. A. W. J. 1999. Geographical differences in growth rates of Arctica islandica (Mollusca: Bivalvia) from the North Sea and adjacent waters. Journal of the Marine Biological Association of the United Kingdom 79:907915.Google Scholar
Woodring, W. P., Bramlette, M. N., and Kew, W. S. W. 1946. Geology and paleontology of Palos Verdes Hills, California. U.S. Geological Survey Professional Paper 207.Google Scholar
Yang, H., Zhang, T., Wang, J., Wang, P., He, Y., and Zhang, F. 1999. Growth characteristics of Chlamys farreri and its relation with environmental factors in intensive raft-culture areas of Sishiliwan Bay, Yantai. Journal of Shellfish Research 18:7176.Google Scholar
Ziveri, P., Thunell, R. C., and Rio, D. 1995. Export production of coccolithophores in an upwelling region: results from San Pedro Basin, Southern California Borderlands. Marine Micro-paleontology 24:335358.Google Scholar