Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T06:49:45.595Z Has data issue: false hasContentIssue false

Endosymbiont change as a key innovation in the adaptive radiation of Soritida (Foraminifera)

Published online by Cambridge University Press:  08 February 2016

Susan. L. Richardson*
Affiliation:
Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520 Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida 34949. E-mail: [email protected]

Abstract

A phylogeny of 54 Recent and fossil species of Soritacea (Foraminifera) was used to test the hypothesis that endosymbiosis has driven the evolution of the clade. Endosymbiosis with photosynthetic eukaryotes is the plesiomorphic condition for the entire clade Soritacea. Living species dwell in tropical-subtropical, shallow-water habitats and are characterized by the possession of rhodophyte, chlorophyte, or dinophyte photosymbionts. Two distinct changes in endosymbiont type are recognized when endosymbiont type is mapped in the cladogram of Soritacea: (1) a change from rhodophyte to chlorophyte endosymbionts occurred in the stem lineage of the least inclusive clade containing New clade B, Orbiculinida, and Soritida; and (2) a change from chlorophyte to dinophyte endosymbionts occurred in the stem lineage of the least inclusive clade containing New clade G, New clade H, New clade I, Sorites, Amphisorus, and Orbitolites. When habitat and ontogeny are optimized on the cladogram of Soritida, the acquisition of dinophyte endosymbionts appears as a key innovation that facilitated a switch in habitat from free-living to attached living on nonphytal and phytal substrata. A subsequent change in the attached habitat from nonphytal to predominantly phytal (seagrasses and macroalgae) substrata is accompanied by a peramorphic trend in the megalospheric tests. The diversification (adaptive radiation) of the crown Soritida subclade resulted from the interplay between the acquisition of a key innovation (dinophyte endosymbionts) and the subsequent change in the ecology of the group (radiation to phytal substrates).

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alberch, P. 1985. Problems with the interpretation of developmental sequences. Systematic Zoology 43:4658.CrossRefGoogle Scholar
Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. 1979. Size and shape in ontogeny and phylogeny. Paleobiology 5:296317.CrossRefGoogle Scholar
Baccaert, J. 1976. Scientific report of the Belgian Expedition to the Australian Great Barrier Reef, 1967. Foraminifera. I. Soritidae of the Lizard Island reef complex: a preliminary report. Annales de la Société Géologique de Belgique 99:237262.Google Scholar
Baccaert, J. 1986. Foraminiferal bio- and thanatocoenoses of reef flats, Lizard Island, Great Barrier Reef, Australia: nature of substrate. Annales de la Société Royale Zoologique de Belgique 116:314.Google Scholar
Berggren, W. A., and Norris, R. D. 1997. Biostratigraphy, phylogeny and systematics of Paleocene trochospiral planktic foraminifera. Micropaleontology 43(Suppl. 1).CrossRefGoogle Scholar
Bermudes, D., and Back, R. C. 1991. Symbiosis inferred from the fossil record. Pp. 7291in Margulis, and Fester, 1991.Google Scholar
Bernhard, J. M. 1996. Microaerophilic and facultative anaerobic benthic foraminifera; a review of experimental and ultrastructural evidence. Revue de Paléobiologie 15:261275.Google Scholar
Bernhard, J. M., and Bowser, S. S. 1999. Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology. Earth-Science Reviews 46:149165.CrossRefGoogle Scholar
Bernhard, J. M., Buck, K. R., and Farmer, M. A. 2000. The Santa Barbara Basin is a symbiosis oasis. Nature 403:7780.CrossRefGoogle Scholar
Bhattacharya, D., and Medlin, L. 1998. Algal phylogeny and the origin of land plants. Plant Physiology 116c:915.CrossRefGoogle Scholar
Bond, J. E., and Opell, B. D. 1998. Testing adaptive radiation and key innovation hypotheses in spiders. Evolution 52:403414.CrossRefGoogle ScholarPubMed
Borowitzka, M. A., and Lethbridge, R. C. 1989. Seagrass epiphytes. Pp. 458499in Larkum, A. W. D., McComb, A. J., and Shepherd, S. A., eds. Biology of seagrasses. Elsevier, Amsterdam.Google Scholar
Bosence, D. 1989. Surface sublittoral sediments of Florida Bay. Bulletin of Marine Science 44:434453.Google Scholar
Brady, H. B. 1888. Note on the reproductive condition of Orbitolites complanata, var. laciniata. Journal of the Royal Microscopical Society 1888:695697.Google Scholar
Brasier, M. D. 1975. An outline history of seagrass communities. Palaeontology 18:681702.Google Scholar
Brasier, M. D. 1995. Fossil indicators of nutrient levels. 2: Evolution and extinction in relation to oligotrophy. In Bosence, D. W. J. and Allison, P. A., eds. Marine palaeoenvironmental analysis from fossils. Geological Society of London Special Publication 83:133150.Google Scholar
Brasier, M. D., and Green, O. R. 1993. Winners and losers: stable isotopes and microhabitats of living Archaiadae and Eocene Nummulites (larger foraminifera). Marine Micropaleontology 20:267276.CrossRefGoogle Scholar
Brooks, D. R., and McLennan, D. A. 1991. Phylogeny, ecology, and behavior. University of Chicago Press, Chicago.Google Scholar
Bryan, J. R. 1995. Life history and development of Oligocene larger benthic foraminifera: a test of the environmental control on heterochrony. Tulane Studies in Geology and Paleontology 27:101118.Google Scholar
Budd, A. F., Johnson, K. G., and Stemann, T. A. 1996. Plio-Pleistocene turnover and extinctions in the Caribbean reef-coral fauna. Pp. 205233in Jackson, J. B. C., Budd, A. F., and Coates, A. G., eds. Evolution and environment in tropical America. University of Chicago Press, Chicago.Google Scholar
Cann, J. H., and Clarke, J. D. A. 1993. The significance of Marginopora vertebralis (Foraminifera) in surficial sediments at Esperance, Western Australia, and in last interglacial sediments in northern Spencer Gulf, South Australia. Marine Geology 111:171187.CrossRefGoogle Scholar
Cantino, P. D., and de Queiroz, K. 2000. PhyloCode: a phylogenetic code of biological nomenclature (revision dated: April 8, 2000): http://www.ohio.edu/phylocode/.Google Scholar
Cantino, P. D., Bryant, H. N., de Queiroz, K., Donoghue, M. J., Eriksson, T., Hillis, D. M., and Lee, M. S. Y. 1999. Species names in phylogenetic nomenclature. Systematic Biology 48:790807.CrossRefGoogle ScholarPubMed
Cedhagen, T. 1991. Retention of chloroplasts and bathymetric distribution in the sublittoral foraminiferan Nonionellina labradorica. Ophelia 33:1730.CrossRefGoogle Scholar
Cheetham, A. H., and Jackson, J. B. C. 1996. Speciation, extinction and the decline of arborescent growth in Neogene and Quaternary cheilostome Bryozoa of tropical America. Pp. 205233in Jackson, J. B. C., Budd, A. F., and Coates, A. G., eds. Evolution and environment in tropical America. University of Chicago Press, Chicago.Google Scholar
Coates, A. G., and Jackson, J. B. C. 1987. Clonal growth, algal symbiosis, and reef formation by corals. Paleobiology 13:363378.CrossRefGoogle Scholar
Coddington, J. A. 1988. Cladistic tests of adaptational hypotheses. Cladistics 4:322.CrossRefGoogle ScholarPubMed
Coddington, J. A. 1990. Bridges between evolutionary pattern and process. Cladistics 6:389–386.CrossRefGoogle ScholarPubMed
Coddington, J. A. 1994. The roles of homology and convergence in studies of adaptation in Eggleston, P. and Vane-Wright, R. I., eds. Phylogenetics and ecology. Linnean Society Symposium Series 17:5378.Google Scholar
Cracraft, J. 1990. The origin of evolutionary novelties: pattern and process at different hierarchical levels. Pp. 2143in Nitecki, M. H., ed. Evolutionary innovations. University of Chicago Press, Chicago.Google Scholar
Culver, S. J., and Buzas, M. A. 1998. Patterns of occurrence of benthic foraminifera in time and space. Pp. 207226in Donovan, S. K. and Paul, C. R. C., eds. The adequacy of the fossil record. Wiley, Chichester, England.Google Scholar
Davies, G. R. 1970. Carbonate bank sedimentation, Eastern Shark Bay, Western Australia. In Logan, B. W., Davies, G. R., Read, J. F., and Cebulski, D. E.Carbonate sedimentation and environments, Sharb Bay, Western Australia. American Association of Petroleum Geologists Memoir 13:85168.Google Scholar
De Leeuw, J. W., Frewin, N. L., Van Bergen, P. F., Sinninghe Damsté, J. S., and Collinson, M. E. 1995. Organic carbon as a palaeoenvironmental indictor in the marine realm. In Marine palaeoenvironmental analysis from fossils. Bosence, D. W. J. and Allison, P. A., eds. Geological Society of London Special Publication 83:4371.Google Scholar
De Queiroz, K., and Gauthier, J. 1990. Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Systematic Zoology 39:307322.CrossRefGoogle Scholar
De Queiroz, K., and Gauthier, J. 1992. Phylogenetic taxonomy. Annual Review of Ecology and Systematics 23:449480.CrossRefGoogle Scholar
De Queiroz, K., and Gauthier, J. 1994. Toward a phylogenetic system of nomenclature. Trends in Evolution and Ecology 9:2731.CrossRefGoogle Scholar
Dettmering, C., Röttger, R., Hohenegger, J., and Schmaljohann, R. 1998. The trimorphic life cycle in Foraminifera: observations from cultures allow new evaluation. European Journal of Protistology 34:363368.CrossRefGoogle Scholar
Dirnberger, J. M. 1990. Benthic determinants of settlement for planktonic larvae: availability of settlement sites for the tube-building polychaete Spirorbis spirillum (Linnaeus) settling onto seagrass blades. Journal of Experimental Marine Biology and Ecology 140:89105.CrossRefGoogle Scholar
Dirnberger, J. M. 1993. Dispersal of larvae with a short planktonic phase in the polychaete Spirorbis spirillum (Linnaeus). Bulletin of Marine Science 52:898910.Google Scholar
Donoghue, M. J., Doyle, J. A., Gauthier, J., Kluge, A. G., and Rowe, T. 1989. The importance of fossils in phylogeny reconstruction. Annual Review of Ecology and Systematics 20:431460.CrossRefGoogle Scholar
Douglas, A. E. 1995. The ecology of symbiotic micro-organisms. Advances in Ecological Research 26:69103.CrossRefGoogle Scholar
Duguay, L. E. 1983. Comparative laboratory and field studies on calcification and carbon fixation in foraminiferal-alga associations. Journal of Foraminiferal Research 13:252261.CrossRefGoogle Scholar
Duguay, L. E., and Taylor, D. L. 1978. Primary production and calcification by the soritid foraminifer Archaias angulatus. Journal of Protozoology 25:356361.CrossRefGoogle Scholar
Erez, J. 1978. Vital effect on stable-isotope composition seen in foraminifera and coral skeletons. Nature 273:199202.CrossRefGoogle Scholar
Erskian, M. G. 1972. Patterns of distribution of Foraminifera on Thalassia testudinum. Atoll Research Bulletin 152:3.Google Scholar
Erwin, D. H. 1992. A preliminary classification of evolutionary radiations. Historical Biology 6:133147.CrossRefGoogle Scholar
Escalante, A. A., and Ayala, F. J. 1996. Molecular paleogenetics: the evolutionary history of Plasmodium and related protists. Pp. 2141in Jablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Eva, A. N. 1980. Pre-Miocene seagrass communities in the Caribbean. Palaeontology 23:231236.Google Scholar
Farris, J. S. 1976. Phylogenetic classification of fossils with Recent species. Systematic Zoology 25:271282.CrossRefGoogle Scholar
Farris, J. S. 1989. The retention index and the rescaled consistency index. Cladistics 5:417419.CrossRefGoogle ScholarPubMed
Fensome, R. A., MacRae, R. A., Moldowan, J. M., Taylor, F. J. R., and Williams, G. L. 1996. The early Mesozoic radiation of dinoflagellates. Paleobiology 22:329338.CrossRefGoogle Scholar
Fink, W. L. 1982. The conceptual relationship between ontogeny and phylogeny. Paleobiology 8:254264.CrossRefGoogle Scholar
Fink, W. L. 1988. Phylogenetic analysis and the detection of ontogenetic patterns. Pp. 7191in McKinney, M. L., ed. Heterochrony in evolution: a multidisciplinary approach. Plenum, New York.CrossRefGoogle Scholar
Fujita, K., and Hallock, P. 1999. A comparison of phytal substrate preferences of Archaias and Sorites orbiculus in mixed macroalgal-seagrass beds in Florida Bay. Journal of Foraminiferal Research 29:143151.CrossRefGoogle Scholar
Fujita, K., Nishi, H., and Saito, T. 2000. Populations dynamics of Marginopora kudakajimensis Gudmundsson (Foraminifera: Soritidae) in the Ryukyu Islands, the subtropical northwest Pacific. Marine Micropaleontology 38:267284.CrossRefGoogle Scholar
Galloway, J. J. 1933. A manual of Foraminifera. Prinicipia, Bloomington, Ind.Google Scholar
Gast, R. J., and Caron, D. J. 1996. Molecular phylogeny of symbiotic dinoflagellates from planktonic foraminifera and radiolaria. Molecular Biology and Evolution 13:11921197.CrossRefGoogle ScholarPubMed
Gauthier, J., Kluge, A. G., and Rowe, T. 1988. Amniote phylogeny and the importance of fossils. Cladistics 4:105209.CrossRefGoogle ScholarPubMed
Gould, S. J. 1977. Ontogeny and phylogeny. Belknap Press of Harvard University Press, Cambridge.Google Scholar
Gudmundsson, G. 1994. Phylogeny, ontogeny and systematics of Recent Soritacea Ehrenberg 1839 (Foraminiferida). Micropaleontology 40:101155.CrossRefGoogle Scholar
Haig, D. W. 1988. Miliolid foraminifera from inner neritic sand and mud facies of the Papuan Lagoon, New Guinea. Journal of Foraminiferal Research 18:203236.CrossRefGoogle Scholar
Hallock, P. 1985. Why are larger Foraminifera large? Paleobiology 11:195208.CrossRefGoogle Scholar
Hallock, P. 1988. Diversification in algal symbiont-bearing foraminifera: a response to oligotrophy? Revue de Paléobiologie, Volume Spécial 2:789797.Google Scholar
Hallock, P. 1999. Symbiont-bearing Foraminifera. Pp. 123139in Gupta, B. K. Sen, ed. Modern Foraminifera. Kluwer, Dordrecht.CrossRefGoogle Scholar
Hallock, P., and Peebles, M. W. 1993. Foraminifera with chlorophyte endosymbionts: habitats of six species in the Florida Keys. Marine Micropaleontology 20:277292.CrossRefGoogle Scholar
Harney, J. N., Hallock, P., and Talge, H. K. 1998. Observations on a trimorphic life cycle in Amphistegina gibbosa populations from the Florida Keys. Journal of Foraminiferal Research 28:141147.CrossRefGoogle Scholar
den Hartog, C. 1970. The sea-grasses of the world. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, afd. Natuurkunde, Tweede Reeks 59:1275.Google Scholar
Hawkins, E. K., and Lee, J. J. 1990. Fine structure of the cell surface of a cultured endosymbiont strain of Porphyridium sp. (Rhodophyta). Transactions of the American Microscopical Society 109:352360.CrossRefGoogle Scholar
Heard, S. B., and Hauser, D. L. 1995. Key evolutionary innovations and their ecological mechanisms. Historical Biology 10:151173.CrossRefGoogle Scholar
Heijs, F. M. L. 1985. The seasonal distribution and community structure of the epiphytic algae on Thalassia hemprichii (Ehrenb.) Aschers. from Papua New Guinea. Aquatic Botany 21:295324.CrossRefGoogle Scholar
Henson, F. R. S. 1948. Larger imperforate Foraminifera of south-western Asia: Families Lituolidae, Orbitolinidae and Meandropsinidae. British Museum (Natural History), London.Google Scholar
Heron-Allen, E., and Earland, A. 1915. The Foraminifera of the Kerimba Archipelago (Portuguese East Africa). Transactions of the Zoological Society of London 20:543794.CrossRefGoogle Scholar
Hohenegger, J. 1994. Distribution of living larger Foraminifera NW of Sesoko-Jima, Okinawa, Japan. Marine Ecology 15:291334.CrossRefGoogle Scholar
Hohenegger, J., Yordanova, E., Nakano, Y., and Tatzreiter, F. 1999. Habitats of larger foraminifera on the upper reef slope of Sesoko Island, Okinawa, Japan. Marine Micropaleontology 36:109168.CrossRefGoogle Scholar
Hottinger, L. 1977. Distribution of larger Peneroplidae, Borelis and Nummulitidae in the Gulf of Elat, Red Sea. Utrecht Micropaleontological Bulletins B 15:35110.Google Scholar
Hottinger, L., and Caus, E. 1982. Marginoporiform structure in Ilerdorbis decussatus n. gen. n. sp., a Senonian agglutinated discoidal foraminifer. Eclogae Geologicae Helvetiae 75:807819.Google Scholar
Hottinger, L., Halicz, E., and Reiss, Z. 1993. Recent foraminifera from the Gulf of Aqaba, Red Sea. Slovenska Akademija Znanosti in Umetnosti (Ljubljana) Monograph 33.Google Scholar
International Commission on Zoological Nomenclature (ICZN). 1999. International Code of Zoological Nomenclature, 4th ed.International Trust for Zoological Nomenclature, Natural History Museum, London.Google Scholar
Jackson, J. B. C. 1977. Competition on marine hard substrata: the adaptive significance of solitary and colonial strategies. American Naturalist 11:743767.CrossRefGoogle Scholar
Jackson, J. B. C. 1979. Morphological strategies of sessile animals. Pp. 499555in Larwood, G. and Rosen, B. R., eds. Biology and systematics of colonial organisms. Academic Press, London.Google Scholar
Jeon, K. W. 1991. Amoeba and x-Bacteria: symbiont acquisition and possible species change. Pp. 118131in Margulis, and Fester, 1991.Google Scholar
Kaehler, S., and Hughes, R. G. 1992. The distributions and growth patterns of three epiphytic hydroids on the Caribbean seagrass Thalassia testudinum. Bulletin of Marine Science 51:329336.Google Scholar
Keough, M. J. 1986. The distribution of a bryozoan on seagrass blades: settlement, growth and mortality. Ecology 67:846857.CrossRefGoogle Scholar
Kloos, D. P. 1978. Reproduction and life cycle of Sorites orbiculus (Forskål), foraminifer. Geologie en Mijnbouw 57:221225.Google Scholar
Kloos, D. P. 1980. Studies on the foraminifer Sorites orbiculus. Geologie en Mijnbouw 59:375383.Google Scholar
Kloos, D. P. 1981. Growth and embryogenesis of the foraminifer Sorites orbiculus. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen B 84:145159.Google Scholar
Kloos, D. P. 1984. Parents and broods of Sorites orbiculus (Forskål), a biometric analysis. Journal of Foraminiferal Research 14:277281.CrossRefGoogle Scholar
Knight, R., and Mantoura, F. C. 1985. Chlorophyll and carotenoid pigments in Foraminifera and their symbiotic algae: analysis by high performance liquid chromatography. Marine Ecology Progress Series 23:241249.CrossRefGoogle Scholar
Kremer, B. P., Schmaljohann, R., and Röttger, R. 1980. Features and nutritional significance of photosynthates produced by unicellular algae symbiotic with larger Foraminifera. Marine Ecology Progress Series 2:225228.CrossRefGoogle Scholar
Kuile, B. ter, and Erez, J. 1984. In situ growth experiments on the symbiont-bearing foraminifera Amphistegina lobifera and Amphisorus hemprichii. Journal of Foraminiferal Research 14:262276.CrossRefGoogle Scholar
Langer, M. R. 1988. Recent epiphytic foraminifera from Vulcano (Mediterranean Sea). Revue de Paléobiologie, Volume Spécial 2:827832.Google Scholar
Langer, M. R. 1993. Epiphytic foraminifera. Marine Micropaleontology 20:235265.CrossRefGoogle Scholar
Langer, M. R. 1995. Oxygen and carbon isotopic composition of Recent larger and smaller foraminifera from the Madang Lagoon (Papua New Guinea). Marine Micropaleontology 26:215221.CrossRefGoogle Scholar
Langer, M. R., and Lipps, J. H. 1995. Phylogenetic incongruence between dinoflagellate endosymbionts (Symbiodinium) and their host foraminifera (Sorites): small-subunit ribosomal RNA gene sequence evidence. Marine Micropaleontology 26:179186.CrossRefGoogle Scholar
Larson, A., and Losos, J. B. 1996. Phylogenetic systematics of adaptation. Pp. 187220in Rose, and Lauder, 1996.Google Scholar
Lee, J. J. 1983. Perspective on algal endosymbionts in larger Foraminifera. In Jeon, K. W., ed. Intracellular symbioses. International Review of Cytology 14(Suppl.):4977.Google Scholar
Lee, J. J. 1990. Fine structure of the rhodophycean Porphyridium purpureum in situ in Peneroplis pertusus (Forskål) and P. acicularis (Batsch) and in axenic culture. Journal of Foraminiferal Research 20:162169.CrossRefGoogle Scholar
Lee, J. J., and Anderson, O. R. 1991. Symbiosis in foraminifera. Pp. 157220in Lee, J. J. and Anderson, O. R., eds. Biology of Foraminifera. Academic Press, New York.Google Scholar
Lee, J. J., and Bock, W. D. 1976. The importance of feeding in two species of soritid foraminifera with algal symbionts. Bulletin of Marine Science 26:530537.Google Scholar
Lee, J. J., and Hallock, P. 1987. Algal symbiosis as the driving force in the evolution of larger foraminifera in Lee, J. J. and Fredrick, J. F., eds. Endocytobiology III. Proceedings of the Third International Colloquium on Endocytobiology and Symbiosis. Annals of the New York Academy of Sciences 503:330347.Google Scholar
Lee, J. J., and Lawrence, C. 1990. Endosymbiotic dinoflagellates from the larger foraminifera Amphisorus hemprichii and Sorites marginalis. Pp. 221223in Nardon, P., Gianinazzi-Pearson, V., Grenier, A. M., Margulis, L., and Smith, D. C., eds. Endocytobiology IV. Proceedings of the Fourth International Colloquium on Endocytobiology and Symbiosis. Institut National de la Recherche Agronomique, Paris.Google Scholar
Lee, J. J., and Lee, R. E. 1990. Chloroplast retention in Elphidids (Foraminifera). Pp. 215220in Nardon, P., Gianinazzi-Pearson, V., Grenier, A. M.Margulis, L., and Smith, D. C., eds. Endocytobiology IV. Proceedings of the Fourth International Colloquium on Endocytobiology and Symbiosis. Institut National de la Recherche Agronomique, Paris.Google Scholar
Lee, J. J., and Zucker, W. 1969. Algal flagellate symbiosis in the foraminifer Archaias. Journal of Protozoology 16:7181.CrossRefGoogle Scholar
Lee, J. J., McEnery, M. E., Kahn, E. G., and Schuster, F. L. 1979. Symbiosis and the evolution of larger foraminifera. Micropaleontology 25:118140.CrossRefGoogle Scholar
Lee, J. J., Wray, C., Cooke, D., Lawrence, C., LaPierre, P., Espinal, G., and Olea, R. 1994. Symbiont specificity in larger foraminifera. Pp. 114116in Hausmann, K. and Hülsmann, N., eds. Progress in protozoology. Gustav Fischer Verlag, Stuttgart.Google Scholar
Lee, J. J., Wray, C., and Lawrence, C. 1995. Could foraminiferal zooxanthellae be derived from environmental pools contributed to by different coelenterate hosts? Acta Protozoologica 34:7585.Google Scholar
Lee, J. J., Morales, J., Bacus, S., Diamont, A., Hallock, P., Pawlowski, J., and Thorpe, J. 1997. Progress in characterizing the endosymbiotic dinoflagellates of soritid foraminifera and related studies on some stages in the life cycle of Marginopora vertebralis. Journal of Foraminiferal Research 27:254263.CrossRefGoogle Scholar
Leutenegger, S. 1977a. Reproduction cycles of larger foraminifera and depth distribution of generations. Utrecht Micropaleontological Bulletins 15:2734.Google Scholar
Leutenegger, S. 1977b. Ultrastructure and motility of dinophyceans symbiotic with larger, imperforated foraminifera. Marine Biology 44:157164.CrossRefGoogle Scholar
Leutenegger, S. 1977c. Ultrastructure de Foraminifères perforés et imperforés ainsi que de leurs symbiotes. Cahiers de Micropaléontologie 3:152.Google Scholar
Leutenegger, S. 1977d. Symbiosis between larger foraminifera and unicellular algae in the Gulf of Elat. Utrecht Micropaleontological Bulletin 15:241244.Google Scholar
Leutenegger, S. 1984. Symbiosis in benthic foraminifera: specificity and host adaptations. Journal of Foraminiferal Research 14:1635.CrossRefGoogle Scholar
Levinton, J. 1988. Genetics, paleontology and macroevolution. Cambridge University Press, Cambridge.Google Scholar
Lister, J. J. 1895. Contributions to the life-history of the Foraminifera. Philosophical Transactions of the Royal Society of London B 186:401453.Google Scholar
Loeblich, A. R. Jr., and Tappan, H. 1964. Protista 2: Sarcodina, chiefly “Thecamoebians” and Foraminiferida. Part C ofMoore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America and University of Kansas, New York.Google Scholar
Loeblich, A. R. Jr., and Tappan, H. 1987. Foraminiferal genera and their classification. Van Nostrand Reinhold, New York.Google Scholar
Lopez, E. 1979. Algal chloroplasts in the protoplasm of three species of benthic foraminifera: taxonomic affinity, viability and persistence. Marine Biology 53:201211.CrossRefGoogle Scholar
Maddison, W. P., Donoghue, M. J., and Maddison, D. R. 1984. Outgroup analysis and parsimony. Systematic Zoology 33:83104.CrossRefGoogle Scholar
Margulis, L. 1970. Origin of eukaryotic cells. Yale University Press, New Haven, Conn.Google Scholar
Margulis, L. 1991. Symbiogenesis and symbionticism. Pp. 114in Margulis, and Fester, 1991.Google Scholar
Margulis, L., and Chapman, M. J. 1998. Endosymbioses: cyclical and permanent in evolution. Trends in Microbiology 6:342345.CrossRefGoogle ScholarPubMed
Margulis, L., and Fester, R., eds. 1991. Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, Cambridge.Google ScholarPubMed
Smith, J. Maynard 1991. A Darwinian view of symbiosis. Pp. 2639in Margulis, and Fester, 1991.Google Scholar
Mayr, E. 1963. Animal species and evolution. Belknap Press of Harvard University Press, Cambridge.CrossRefGoogle Scholar
McEnery, M. E., and Lee, J. J. 1981. Cytological and fine structural studies of three species of symbiont-bearing larger foraminifera from the Red Sea. Micropaleontology 27:7183.CrossRefGoogle Scholar
McKinney, M. L., and McNamara, K. J. 1991. Heterochrony: the evolution of ontogeny. Plenum, New York.CrossRefGoogle Scholar
Müller-Merz, E., and Lee, J. J. 1976. Symbiosis in the larger foraminiferan Sorites marginalis (with notes on Archaias spp.). Journal of Protozoology 23:390396.CrossRefGoogle Scholar
Norell, M. A. 1992. Taxic origin and temporal diversity: the effect of phylogeny. Pp. 89118in Novacek, M. J. and Wheeler, Q. D., eds. Extinction and phylogeny. Columbia University Press, New York.Google Scholar
Norell, M. A. 1993. Tree-based approaches to understanding history: comments on ranks, rules, and the quality of the fossil record. American Journal of Science A 293:407417.CrossRefGoogle Scholar
Norris, R. D. 1991. Symbiosis as an evolutionary innovation in the radiation of Paleocene planktic foraminifera. Paleobiology 22:461480.CrossRefGoogle Scholar
Novacek, M. J. 1996. Paleontological data and the study of adaptation. Pp. 311359in Rose, and Lauder, 1996.Google Scholar
Novak, R. 1983. A study in ultra-ecology: microorganisms on the seagrass Posidonia oceanica (L.) Delile. Marine Ecology 5:143190.CrossRefGoogle Scholar
Phillips, R. C., and Meñez, E. G. 1988. Seagrasses. Smithsonian Contributions to the Marine Sciences 34.Google Scholar
Reilly, S. M., Wiley, E. O., and Meinhardt, D. J. 1997. An integrative approach to heterochrony: the distinction between interspecific and intraspecific phenomena. Biological Journal of the Linnean Society 60:119148.CrossRefGoogle Scholar
Richardson, S. L. 2000. Epiphytic foraminiferans: diversity and distribution. In Macintyre, I. and Rützler, K., eds. Natural history of the Pelican Cays, Belize. Atoll Research Bulletin 475:208228.Google Scholar
Richardson, S. L., and Rützler, K. 1999. Bacterial endosymbionts in the agglutinating foraminiferan Spiculidendron corallicolum Rützler and Richardson, 1996. Symbiosis 26:299312.Google Scholar
Rose, M. R., and Lauder, G. V., eds. 1996. Adaptation. Academic Press, San Diego.Google Scholar
Ross, C. A. 1972. Biology and ecology of Marginopora vertebralis (Foraminiferida), Great Barrier Reef. Journal of Protozoology 19:181192.CrossRefGoogle Scholar
Ross, C. A. 1974. Evolutionary and ecological significance of large calcareous Foraminiferida (Protozoa), Great Barrier Reef. Proceedings of the Second International Coral Reef Symposium 1:327333.Google Scholar
Ross, C. A. 1979. Ecology of large calcareous Foraminiferida, Queensland Shelf and Great Barrier Reef, Australia. Research Reports National Geographic Society, 1970 Projects: 443459.Google Scholar
Ross, C. A., and Ross, J. R. P. 1978. Adaptive evolution in the Soritids Marginopora and Amphisorus (Foraminiferida). Scanning Electron Microscopy 2:5360.Google Scholar
Röttger, R., Dettmering, C., Krüger, R., Schmaljohann, R., and Hohenegger, J. 1998. Gametes in Nummulitids (Foraminifera). Journal of Foraminiferal Research 28:345348.CrossRefGoogle Scholar
Rowan, R. 1998. Diversity and ecology of zooxanthellae on coral reefs. Journal of Phycology 34:407417.CrossRefGoogle Scholar
Salvadori, A. 1988. Un esempio di schizogonia intratalamica in una forma eocenica di Orbitolites. Bollettino della Società Paleontologica Italiana 27:301305.Google Scholar
Sanderson, M. J., and Donoghue, M. J. 1989. Patterns of variation in levels of homoplasy. Evolution 43:17811795.CrossRefGoogle ScholarPubMed
Saunders, J. B., Jung, P., and Biju-Duval, B. 1986. Neogene paleontology in the northern Dominican Republic. 1. Field surveys, lithology, environment, and age. Bulletins of American Paleontology 89(323):179.Google Scholar
Schluter, D. 1996. Ecological causes of adaptive radiation. American Naturalist 148:S40S64.CrossRefGoogle Scholar
Severin, K. P. 1983. The size-frequency distribution of the foraminifer Marginopora vertebralis on seagrass through time. Science in New Guinea 10:187195.Google Scholar
Severin, K. P. 1987. Spatial and temporal variation of Marginopora vertebralis on seagrass in Papua New Guinea during a six week period. Micropaleontology 33:368377.CrossRefGoogle Scholar
Sitte, P. 1993. Symbiogenetic evolution of complex cell and complex plastids. European Journal of Protistology 29:131143.CrossRefGoogle ScholarPubMed
Skelton, P. W. 1993. Adaptive radiation: definition and diagnostic tests. Pp. 4558in Lees, D. R. and Edwards, D., eds. Evolutionary patterns and processes. Linnean Society of London, London.Google Scholar
Smith, A. B., and Littlewood, D. T. J. 1994. Paleontological data and molecular phylogenetic analysis. Paleobiology 20:259273.CrossRefGoogle Scholar
Smith, A. B., and Littlewood, D. T. J. 1997. Molecular and morphological evolution during the post-Palaeozoic diversification of echinoids. Pp. 559583in Givnish, T. J. and Systma, K. J., eds. Molecular evolution and adaptive radiation. Cambridge University Press, Cambridge.Google Scholar
Smith, R. K. 1968. An intertidal Marginopora colony in Suva Harbor, Fiji. Contributions from the Cushman Foundation for Foraminiferal Research 29:1217.Google Scholar
Sogin, M. L., and Silberman, J. D. 1998. Evolution of the protists and protistan parasites from the perspective of molecular systematics. International Journal for Parasitology 28:1120.CrossRefGoogle ScholarPubMed
Stanley, G. D. Jr., and Swart, P. K. 1995. Evolution of the coral-zooxanthellae symbiosis during the Triassic: a geochemical approach. Paleobiology 21:179199.CrossRefGoogle Scholar
Stanley, S. M. 1975. A theory of evolution above the species level. Proceedings of the National Academy of Sciences USA 72:646650.CrossRefGoogle ScholarPubMed
Stanley, S. M. 1990. Adaptive radiation and macroevolution. In Taylor, P. D. and Larwood, G. P., eds. Major evolutionary radiations. Systematics Association Special Volume 42:115.Google Scholar
Stiller, J. W., and Hall, B. D. 1997. The origin of red algae: implications for plastid evolution. Proceedings of the National Academy of Sciences USA 94:45204525.CrossRefGoogle ScholarPubMed
Stockman, K. W., Ginsburg, R. N., and Shinn, E. A. 1967. The production of lime mud by algae in South Florida. Journal of Sedimentary Petrology 37:633648.Google Scholar
Swofford, D. L. 1993. PAUP: Phylogenetic analysis using parsimony, Version 3.1.1. Computer program distributed by the Illinois Natural History Survey, Champaign.Google Scholar
Taylor, P. D., and Larwood, G. P. 1990. Major evolutionary radiations in the Bryozoa. In Major Evolutionary Radiations: Taylor, P. D. and Larwood, G. P., eds. Systematics Association Special Volume 42:209233.Google Scholar
Thompson, J. N. 1987. Symbiont-induced speciation. Journal of the Linnean Society of London 32:385393.CrossRefGoogle Scholar
Tomasko, D. A., and Lapointe, B. E. 1991. Productivity and biomass of Thalassia testudinum as related to water column nutrient availability and epiphyte levels: field observations and experimental studies. Marine Ecology Progress Series 75:917.CrossRefGoogle Scholar
Vermeij, G. J. 1996. Adaptations of clades: resistance and response. Pp. 363380in Rose, and Lauder, 1996.Google Scholar
Voigt, E. 1981. Upper Cretaceous bryozoan-seagrass association in the Maastrichtian of the Netherlands. Pp. 281298in Larwood, G. P. and Nielsen, C., eds. Recent and fossil Bryozoa. Olsen and Olsen, Fredensborg, Denmark.Google Scholar
Waszczak, R. F., and Steinker, D. C. 1987. Paleoenvironmental and paleoecologic implications of Recent foraminiferan distribution patterns in the lower Florida Keys. In Maurrasse, F., ed. Symposium on south Florida geology. Miami Geological Society Memoir 3:203225.Google Scholar
Wefer, G., and Berger, W. H. 1980. Stable isotopes in benthic Foraminifera: seasonal variation in large tropical species. Science 209:803805.CrossRefGoogle ScholarPubMed
Wefer, G., and Berger, W. H. 1991. Isotope paleontology: growth and composition of extant calcareous species. Marine Geology 100:207248.CrossRefGoogle Scholar
Wielandt, U. 1996. Benthic foraminiferal paleoecology and microfacies investigations of Paleogene sediments from the Farafra Oasis, Western Desert, Egypt. Tübinger Mikropaläontologische Mitteilungen 13:178.Google Scholar
Wilson, B. 1998. Epiphytal foraminiferal assemblages on the leaves of the seagrasses Thalassia testudinum and Syringodium filiforme. Caribbean Journal of Science 34:131132.Google Scholar
Zieman, J. C. 1975. Quantitative and dynamic aspects of the ecology of turtle grass, Thalassia testudinum. Estuarine Research 1:541562.Google Scholar
Zohary, T., Reiss, Z., and Hottinger, L. 1980. Population dynamics of Amphisorus hemprichii (Foraminifera) in the Gulf of Elat (Aqaba), Red Sea. Eclogae Geologicae Helvetiae 73:10711094.Google Scholar