Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T11:58:53.991Z Has data issue: false hasContentIssue false

Effects of stratigraphic completeness on interpretations of extinction rates across the Cretaceous-Tertiary boundary

Published online by Cambridge University Press:  08 February 2016

Lowell Dingus*
Affiliation:
Department of Paleontology, University of California, Berkeley, California 94720

Abstract

A rate of extinction must specify both the amount of taxonomic change and the duration of that change. A consistent means of temporal measurement must be used to establish the duration. Terms used to describe the extinction, like catastrophic and gradual, should be quantitatively defined in relation to this framework.

Resolving rates of extinction in the stratigraphic record is limited by (1) the precision of chronostratigraphic correlations between individual sections and (2) the temporal completeness of litho- and biostratigraphic records in those sections. In this study, temporal completeness is estimated in eight of the best-known fluvial and pelagic sections spanning the K-T boundary. Temporal standardization is provided by correlations to the geomagnetic polarity time scale. A review of the literature documents lithologic criteria that might be used to infer the presence of a hiatus of some length at the biostratigraphically recognized K-T boundary. Rather than rejecting the presence of such gaps, this study argues that a hiatus of some length does exist and tries to estimate both a maximum limit for its duration and the probability that it represents a given duration below that limit.

Pelagic sections are probably more complete than fluvial ones. The section at Caravaca, Spain, can be expected to be the most complete, probably preserving sediment during each 10,000-yr interval of Chron 29R. The section in the San Juan Basin, New Mexico, is expected to be the most complete fluvial section, probably preserving sediment during each 100,000-yr interval of 29R.

Results indicate that our best-known marine and terrestrial sections spanning the K-T boundary should not be expected to document biologically catastrophic rates of extinction. A sufficiently precise means of global correlation that is independent of biostratigraphy and causal hypotheses is still unavailable, and it is very unlikely that the sections examined are complete at the 100-yr or biologically catastrophic level of precision. So, although catastrophic amounts of extinction might have occurred during the K-T transition, it seems unlikely that we can distinguish episodes of extinction lasting 100 yr or less from episodes lasting as long as 100,000 yr. Consequently, acceptance of catastrophic hypotheses based on these stratigraphic records seems improbably optimistic at this time.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alvarez, L. W. 1983. Experimental evidence that an asteroid impact led to the extinction of many species 65 million years ago. Proc. Nat. Acad. Sci. USA. 80:627642.CrossRefGoogle Scholar
Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science. 208:10951108.CrossRefGoogle ScholarPubMed
Alvarez, W., Alvarez, L. W., Asaro, F., and Michel, H. V. 1984a. The end of the Cretaceous: sharp boundary or gradual transition? Science. 223:11831186.CrossRefGoogle ScholarPubMed
Alvarez, W., Kauffman, E. G., Surlyk, F., Alvarez, L. W., Asaro, F., and Michel, H. V. 1984b. Impact theory of mass extinctions in the invertebrate fossil record. Science. 223:11351141.CrossRefGoogle ScholarPubMed
Alvarez, W. and Vann, D. W. 1979. Comment on ‘Biostratigraphy and magnetostratigraphy of Paleocene terrestrial deposits, San Juan Basin, New Mexico.’ Geology. 7:6667.2.0.CO;2>CrossRefGoogle Scholar
Archibald, J. D. 1982. A study of Mammalia and geology across the Cretaceous-Tertiary boundary in Garfield County, Montana. Univ. Calif. Pub. Geol. Sci. 122:1286.Google Scholar
Archibald, J. D., Butler, R. F., Lindsay, E. H., Clemens, W. A., and Dingus, L. 1982. Upper Cretaceous-Paleocene biostratigraphy and magnetostratigraphy, Hell Creek and Tullock Formations, northeastern Montana. Geology. 10:153159.2.0.CO;2>CrossRefGoogle Scholar
Baadsgaard, H. and Lerbekmo, J. F. 1980. A Rb-Sr age for the Cretaceous-Tertiary boundary (Z coal), Hell Creek, Montana. Can. J. Earth Sci. 17:671673.CrossRefGoogle Scholar
Barrell, J. 1917. Rhythms and the measurement of geologic time. Geol. Soc. Am., Bull. 28:745904.CrossRefGoogle Scholar
Behrensmeyer, A. K. 1982a. Time sampling intervals in the vertebrate fossil record. Proc. Third N. Am. Paleontol. Conv. 1:4145.Google Scholar
Behrensmeyer, A. K. 1982b. Time resolution in fluvial assemblages. Paleobiology. 8:211217.CrossRefGoogle Scholar
Berggren, W. A. 1964. Some planktonic foraminifera from the Maastrichtian and type Danian sections of southern Scandinavia. Stockholm Contrib. Geol. 9:1106.Google Scholar
Butler, R. F. and Lindsay, E. H. 1980. Magnetostratigraphy, biostratigraphy and geochronology of the Cretaceous-Tertiary boundary sediments, Red Deer Valley. Nature. 284:375.CrossRefGoogle Scholar
Butler, R. F. and Lindsay, E. H. 1983. Magnetic mineralogy of continental deposits, San Juan Basin, New Mexico. EOS, Trans. Am. Geophys. Union. 64:683.Google Scholar
Butler, R. F., Lindsay, E. H., Jacobs, L. L., and Johnson, N. M. 1977. Magnetostratigraphy of the Creatceous-Tertiary boundary in the San Juan Basin, New Mexico. Nature. 267:318323.CrossRefGoogle Scholar
Camp, C. L. 1952. Geological boundaries in relation to faunal changes and diastrophism. J. Paleontol. 26:353358.Google Scholar
Case, T. J. 1978. Speculations on the growth rate and reproduction of some dinosaurs. Paleobiology. 4:320328.CrossRefGoogle Scholar
Clemens, W. A. 1982. Patterns of extinction and survival of the terrestrial biota during the Cretaceous-Tertiary transition. Geol. Soc. Am. Spec. Pap. 190:407413.Google Scholar
Clemens, W. A. and Archibald, J. D. 1980. Evolution of terrestrial faunas during the Cretaceous-Tertiary transition. Mém. Soc. Géol. France, N.S. 59:6774.Google Scholar
Clemens, W. A., Archibald, J. D., and Hickey, L. J. 1981. Out with a whimper not a bang. Paleobiology. 7:293298.CrossRefGoogle Scholar
Cooper, M. R. 1977. Eustacy during the Cretaceous: its implications and importance. Paleogeog. Paleoclimatol. Paleoecol. 22:160.CrossRefGoogle Scholar
Dingus, L. and Sadler, P. M. 1982. The effects of stratigraphic completeness on estimates of evolutionary rates. Syst. Zool. 31:400412.CrossRefGoogle Scholar
Edwards, L. E. 1982. Numerical and semi-objective biostratigraphy: review and predictions. Proc. Third N. Am. Paleontol. Conv. 1:147152.Google Scholar
Fassett, J. E. 1979. Comment on ‘Biostratigraphy and magnetostratigraphy of Paleocene terrestrial deposits, San Juan Basin, New Mexico.’ Geology. 7:6970.2.0.CO;2>CrossRefGoogle Scholar
Ganapathy, R. 1980. A major meteorite impact on the Earth 65 million years ago: evidence from the Cretaceous-Tertiary boundary clay. Science. 207:921923.CrossRefGoogle Scholar
Gartner, S. and McGuirx, J. P. 1979. Terminal Cretaceous extinction scenario for a catastrophe. Science. 206:12721276.CrossRefGoogle ScholarPubMed
Hanson, C. B. 1980. Fluvial taphonomic processes: Models and experiments. Pp. 156181. In: Behrensmeyer, A. K. and Hill, A., eds. Fossils in the Making. 338 pp. Univ. Chicago Press; Chicago.Google Scholar
Hickey, L. J. 1981. Land plant evidence compatible with gradual, not catastrophic, change at the end of the Cretaceous. Nature. 292:529531.CrossRefGoogle Scholar
Hsü, K. J. 1980. Terrestrial catastrophe caused by cometary impact at the end of the Cretaceous. Nature. 285:201203.CrossRefGoogle Scholar
Hsü, K. J. et al. 1982a. Mass mortality and its environmental and evolutionary consequences. Science. 216:249255.CrossRefGoogle ScholarPubMed
Hsü, K. J., McKenzie, J. A., and He, Q. X. 1982b. Terminal Cretaceous environmental and evolutionary changes. Geol. Soc. Am., Sp. Pap. 190:317328.Google Scholar
Izett, G. A., Wilcox, R. E., Powers, H. A., and Desborough, G. A. 1970. The Bishop Ash Bed, a Pleistocene marker bed in the western United States. Quat. Res. 1:121132.CrossRefGoogle Scholar
Kauffman, E. G. 1979. The ecology and biogeography of the Cretaceous-Tertiary extinction event. In: Christensen, W. K. and Birkelund, T., eds. Cretaceous-Tertiary Boundary Events. Proc. Univ. Copenhagen. 2:2937.Google Scholar
Keith, M. L. 1982. Violent volcanism, stagnant oceans and some inferences regarding petroleum, strata-bound ores and mass extinctions. Geochim. Cosmochim. Acta. 46:26212637.CrossRefGoogle Scholar
Kent, D. V. 1977. An estimate of the duration of the faunal change at the Cretaceous-Tertiary boundary. Geology. 5:769771.2.0.CO;2>CrossRefGoogle Scholar
Kidwell, S. M. 1982. Time scales of fossil accumulation: patterns from Miocene benthic assemblages. Proc. Third N. Am. Paleontol. Conv. 1:295300.Google Scholar
Kjellström, G. and Hansen, J. M. 1981. Dinoflagellate biostratigraphy of the Cretaceous-Tertiary boundary in southern Scandinavia. Geol. Fören. i Stockholm Förhandl. 103:271278.CrossRefGoogle Scholar
Klute, M. A. 1983. Sedimentation across the Cretaceous-Tertiary boundary in the San Juan Basin, New Mexico. Geol. Soc. Am., Abst. with Prog. 15:291.Google Scholar
LaBrecque, J. L., Kent, D. V., and Cande, S. C. 1977. Revised magnetic polarity time scale for late Cretaceous and Cenozoic time. Geology. 5:330335.2.0.CO;2>CrossRefGoogle Scholar
Larson, P. A. and Opdyke, N. D. 1979. Paleomagnetic results from early Tertiary/late Cretaceous sediments, site 384. DSDP Init. Rept. 43:785787.Google Scholar
Lehman, T. M. 1981. The Alamo Wash local fauna: a new look at the old Ojo Alamo Fauna. In: Lucas, S., Rigby, J. K. Jr., and Kues, B. S., eds. Advances in San Juan Basin Paleontology. Univ. New Mexico Press; Albuquerque.Google Scholar
Lerbekmo, J. F., Singh, C., Jarzen, D., and Russell, D. A. 1979a. The Cretaceous-Tertiary boundary in south-central Alberta—a revision based on additional dinosaurian and microfloral evidence. Can. J. Earth Sci. 16:18661869.CrossRefGoogle Scholar
Lerbekmo, J. F., Evans, M. E., and Baadsgaard, H. 1979b. Magnetostratigraphy, biostratigraphy, and geochronology of Cretaceous-Tertiary boundary sediments, Red Deer Valley. Nature. 279:2630.CrossRefGoogle Scholar
Lillegraven, J. A. 1969. Latest Cretaceous mammals of upper part of Edmonton Formation of Alberta, Canada and review of marsupial-placental dichotomy in mammalian evolution. Contrib. Univ. Kansas Paleontol. 50 (Vertebrata 12):1122.Google Scholar
Lindsay, E. H., Jacobs, L. L., and Butler, R. F. 1979a. Replies to comments on ‘Biostratigraphy and magnetostratigraphy of Paleocene terrestrial deposits, San Juan Basin, New Mexico.’ Geology. 7:6869.2.0.CO;2>CrossRefGoogle Scholar
Lindsay, E. H., Butler, R. F., and Johnson, N. M. 1979b. Reply to comment on ‘Biostratigraphy and magnetostratigraphy of Paleocene terrestrial deposits. San Juan Basin, New Mexico.’. Geology. 7:326327.2.0.CO;2>CrossRefGoogle Scholar
Lindsay, E. H., Butler, R. F., and Johnson, N. M. 1981. Magnetic polarity zonation and biostratigraphy of late Cretaceous and Paleocene continental deposits, San Juan Basin, New Mexico. Am. J. Sci. 281:390435.CrossRefGoogle Scholar
Lindsay, E. H., Butler, R. F., Johnson, N. M., Klute, M. A., and Zeitler, P. K. 1983. Deposition across the Cretaceous/Tertiary boundary in the San Juan Basin, New Mexico. Geol. Soc. Am., Abst. with Prog. 15:308.Google Scholar
Lowrie, W. and Alvarez, W. 1981. One hundred million years of geomagnetic polarity history. Geology. 9:392397.2.0.CO;2>CrossRefGoogle Scholar
Luterbacher, H. P. and Premoli Silva, I. 1962. Note préliminaire sur une revision du profil de Gubbio, Italie. Riv. Ital. Paleontol. Stratigr. 68:253288.Google Scholar
Luterbacher, H. P. and Premoli Silva, I. 1964. Biostratigrafia del limite Cretaceo-Terziario nell' Appennino centrale. Riv. Ital. Paleontol. Stratigr. 70:67128.Google Scholar
Malmgren, B. A. 1981. Biostratigraphy of planktic foraminifera from the Maastrichtian white chalk of Sweden. Geol. Forenen. Stockholm Forhand. 103:357375.CrossRefGoogle Scholar
McKinney, M. L. and Schoch, R. M. 1983. A composite terrestrial Paleocene section with completeness estimates, based upon magnetostratigraphy. Am. J. Sci. 283:801814.CrossRefGoogle Scholar
McLaren, D. J. 1970. Time, life, and boundaries. J. Paleontol. 44:801815.Google Scholar
McLean, D. M. 1978. A terminal Mesozoic “greenhouse”: lessons from the past. Science. 101:401406.CrossRefGoogle Scholar
McLean, D. M. 1981. A test of terminal Mesozoic “catastrophe.” Earth and Planet. Sci. Letters. 53:103108.CrossRefGoogle Scholar
McNulty, C. L. 1979. Smaller Cretaceous Foraminifers of Leg 43, Deep Sea Drilling Project. DSDP Init. Rept. 43:487505.Google Scholar
Monechi, S. 1979. Variations in nannofossil assemblage at the Cretaceous/Tertiary boundary in the Bottaccione section (Gubbio, Italy). In: Christensen, W. K. and Birkelund, T., eds. Cretaceous-Tertiary Boundary Events. Proc. Univ. Copenhagen. 2:164169.Google Scholar
Mörner, N.-A. 1982. The Cretaceous-Tertiary boundary: chronostratigraphic position and sequence of events. J. Geol. 90:564573.CrossRefGoogle Scholar
Ness, G., Levi, S., and Couch, R. 1980. Marine magnetic anomaly time scales for the Cenozoic and late Cretaceous: a précis critique and synthesis. Rev. Geophys. Space Phys. 18:753770.CrossRefGoogle Scholar
Newell, N. D. 1967a. Paraconformities. In: Teichert, C. and Yochelson, E. L., eds. Essays in Paleontology and Stratigraphy. Univ. Kansas Press; Abilene.Google Scholar
Newell, N. D. 1967b. Revolutions in the history of life. Geol. Soc. Am. Spec. Pap. 89:6391.Google Scholar
Newell, N. D. 1972. Stratigraphic gaps and chronostratigraphy. Proc. Internat. Geol. Cong. XXIV. 7:198204.Google Scholar
Officer, C. B. and Drake, C. L. 1983. The Cretaceous-Tertiary transition. Science. 219:13831390.CrossRefGoogle ScholarPubMed
Orth, C. J., Gilmore, J. S., Knight, J. D., Pillmore, C. L., Tschudy, R. H., and Fassett, J. E. 1982. Iridium abundance measurements across the Cretaceous-Tertiary boundary in the San Juan and Raton Basins of northern New Mexico. Geol. Soc. Am. Spec. Pap. 190:423433.Google Scholar
Perch-Nielsen, K. 1979a. Calcareous nannofossil zonation at the Cretaceous-Tertiary boundary in Denmark. In: Christensen, W. K. and Birkelund, T., eds. Cretaceous-Tertiary Boundary Events. Proc. Univ. Copenhagen. 1:115135.Google Scholar
Perch-Nielsen, K. 1979b. Calcareous nannofossils in Cretaceous-Tertiary boundary sections in Denmark. In: Christensen, W. K. and Birkelund, T., eds. Cretaceous-Tertiary Boundary Events. Proc. Univ. Copenhagen. 2:120126.Google Scholar
Perch-Nielsen, K., McKenzie, K. J., and He, Q. 1982. Biostratigraphy and isotope stratigraphy and the “catastrophic” extinction of calcareous nannoplankton at the Cretaceous/Tertiary boundary. Geol. Soc. Am. Spec. Pap. 190:353371.Google Scholar
Premoli Silva, I. 1977. Upper Cretaceous-Paleocene magnetic stratigraphy at Gubbio, Italy. 11. Biostratigraphy. Geol. Soc. Am. Bull. 88:371374.2.0.CO;2>CrossRefGoogle Scholar
Reid, G. C. 1977. Stratispheric aeronomy and the Cretaceous Tertiary extinctions. Syllogeus. 12:7588.Google Scholar
Reineck, H.-E. 1960. Über Zeitlücken in rezenten Flachsee-Sedimenten. Geol. Rundschau. 49:149161.CrossRefGoogle Scholar
Romein, A. J. T. 1977. Calcareous nannofossils from the Cretaceous/Tertiary boundary interval in the Barranco del Gredero (Caravaca, Prov. Murcia, S. E. Spain). Proc. Koninkluke Neder. Akad. Van Wetenschappen, Ser. B. 80:256279.Google Scholar
Roy, J. R. 1977. Variations of the sun and “super” solar flares: possible causes of extinctions. Syllogeus. 12:89110.Google Scholar
Russell, D. A. 1982. Mass extinctions of the late Mesozoic. Sci. Am. 246:5865.CrossRefGoogle Scholar
Russell, D. A. and Singh, C. 1978. The Cretaceous-Tertiary boundary in south-central Alberta—a reappraisal based on dinosaurian and microfloral extinctions. Can. J. Earth Sci. 15:284292.CrossRefGoogle Scholar
Roggenthen, W. M. and Napoleone, G. 1977. Upper Cretaceous-Paleocene magnetic stratigraphy at Gubbio, Italy. IV. Upper Maastrichtian-Paleocene magnetic stratigraphy. Geol. Soc. Am. Bull. 88:378382.2.0.CO;2>CrossRefGoogle Scholar
Sadler, P. M. 1981. Sediment accumulation rates and the completeness of stratigraphic sections. J. Geol. 89:569584.CrossRefGoogle Scholar
Sadler, P. M. and Dingus, L. W. 1982. Expected completeness of sedimentary sections: estimating a time-scale dependent, limiting factor in the resolution of the fossil record. Proc. Third N. Am. Paleontol. Conv. 2:461464.Google Scholar
Schindel, D. E. 1980. Microstratigraphic sampling and the limits of paleontologic resolution. Paleobiology. 6:408426.CrossRefGoogle Scholar
Schindel, D. E. 1982a. Gaps in the fossil record. Nature. 297:282284.CrossRefGoogle Scholar
Schindel, D. E. 1982b. Time resolution in cyclic Pennsylvanian strata: Implications for evolutionary patterns in Glabrocingulum (Mollusca: Archaeogastropoda). Proc. Third N. Am. Paleontol. Conv. 2:482a482e.Google Scholar
Schindel, D. E. 1982c. Resolution analysis: a new approach to gaps in the fossil record. Paleobiology. 8:340353.CrossRefGoogle Scholar
Shaw, A. B. 1964. Time in Stratigraphy. 365 pp. McGraw-Hill; New York.Google Scholar
Shipboard Scientific Party. 1979. Site 384: the Creatceous/Tertiary boundary, Aptian Reefs. DSDP Init. Rept. 43:107132.Google Scholar
Signor, P. W. III and Lipps, J. H. 1982. Sampling bias, gradual extinction patterns and catastrophes in the fossil record. Geol. Soc. Am. Spec. Pap. 190:291296.Google Scholar
Sloan, R. E. and Van Valen, L. 1965. Cretaceous mammals from Montana. Science. 148:220227.CrossRefGoogle ScholarPubMed
Smit, J. 1977. Discovery of a planktonic foraminiferal association between the Abathomphalus mayaroensis Zone and the ‘Globigerina’ eugubina Zone at the Cretaceous/Tertiary boundary in the Barranco del Gredero (Caravaca, SE Spain). Proc., Koinkluke Neder. Akad. Van Wetenschappen, Ser. B. 80:280301.Google Scholar
Smit, J. 1979. The Cretaceous/Tertiary transition in the Barranco del Gredero, Spain. In: Christensen, W. K. and Birkelund, T., eds. Cretaceous-Tertiary Boundary Events. Proc. Univ. Copenhagen. 2:156163.Google Scholar
Smit, J. 1981. A Catastrophic Event at the Cretaceous-Tertiary Boundary. Acad. Proefschr. Wisk. Nat., Univ. Amsterdam. 138 pp.Google Scholar
Smit, J. 1982. Extinction and evolution of planktonic foraminifera after a major impact at the Cretaceous/Tertiary boundary. Geol. Soc. Am. Spec. Pap. 190:329352.Google Scholar
Smit, J. and Hertogen, J. 1980. An extraterrestrial event at the Cretaceous-Tertiary boundary. Nature. 285:198200.CrossRefGoogle Scholar
Smit, J. and Klaver, G. 1981. Sanidine spherules at the Cretaceous-Tertiary boundary—cometary material? In: Smit, J.A Catastrophic Event at the Cretaceous-Tertiary Boundary. Acad. Proeschr. Wisk. Nat. Univ. Amsterdam.Google Scholar
Smit, J. and ten Kate, W. G. H. Z. 1981. Trace element patterns at the Cretaceous-Tertiary boundary—consequences of a large impact. Cret. Res. 3:307.CrossRefGoogle Scholar
Srivastava, S. K. 1979. Pollen biostratigraphy of the Edmonton Formation (Maestrichtian), Alberta, Canada. Paleogeog., Paleoclimatol., Paleoecol. 7:221276.CrossRefGoogle Scholar
Surlyk, F. 1979. Guide to Stevns Klint. In: Christensen, W. K. and Birkelund, T., eds. Cretaceous-Tertiary Boundary Events. Proc. Univ. Copenhagen. 1:164170.Google Scholar
Thierstein, H. R. 1982. Terminal Cretaceous plankton extinctions: a critical assessment. Geol. Soc. Am. Spec. Pap. 190:385399.Google Scholar
Thierstein, H. R. and Okada, H. 1979. The Cretaceous/Tertiary boundary event in the North Atlantic. DSDP Init. Rept. 43:601616.Google Scholar
Tucker, W. H. 1977. The effect of a nearby supernova explosion on the Cretaceous-Tertiary environment. Syllogeus. 12:111124.Google Scholar
Van Andel, T. H. 1981. Consider the incompleteness of the geological record. Nature. 294:397398.CrossRefGoogle Scholar
Van Valen, L. and Sloan, R. E. 1977. Ecology and extinction of the dinosaurs. Evol. Theory. 2:3764.Google Scholar
Vogt, P. R. 1972. Evidence for global synchronism in mantle plume convection, and possible significance for geology. Nature. 240:338342.CrossRefGoogle Scholar
Zoller, W. H., Parrington, J. R., and Kotra, J. M. P. 1983. Iridium enrichment in airborne particles from Kilauea volcano: January 1983. Science. 222:11181121.CrossRefGoogle ScholarPubMed