Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T22:24:40.091Z Has data issue: false hasContentIssue false

Ecological succession as an aspect of structure in fossil communities

Published online by Cambridge University Press:  25 May 2016

Kenneth R. Walker
Affiliation:
Dept. of Geol. Sci., Univ. Tenn., Knoxville, TN 37916
Leonard P. Alberstadt
Affiliation:
Dept. of Geol., Vanderbilt Univ., Nashville, TN 37203

Abstract

Succession involves changes in a community through time, whether internally or externally controlled. As succession progresses, niche specialization, species diversity (variety and equitability), complexity of food chains, and pattern diversity increase; net production and species growth rate decrease. We apply the succession concept to three types of ancient community sequences: 1) fossil reefs (Ordovician—Cretaceous in age), 2) short-term successions occurring through thin stratigraphic intervals, and 3) long-term successions occurring through thicker stratigraphic intervals. Ancient reefs show four vertical zones: (1) a basal stabilization zone (autogenic), 2) the overlying colonization zone (autogenic, pioneer stage), 3) the diversification zone, the bulk of most reefs (diversification culminating in climax), and 4) the uppermost domination zone. The first three zones represent autogenic succession but the final stage may involve allogenic succession. Short-term succession usually occurs where periodic allogenic catastrophes wipe out the community which is rebuilt through autogenic succession. Opportunistic pioneer species are important and in our examples (Ordovician, Silurian, and Cretaceous) are species which pave soft substrata. Paleozoic strophomenid brachiopods filled this role, and inoceramid pelecypods served the function in the Mesozoic. The succession which begins with opportunists progresses to a climax community of equilibrists. Repetition of catastrophe-succession couplets produces a cyclic stratigraphic record. Long-term successions are recorded in thicker stratigraphic sequences, and are of two types: 1) autogenic succession in unchanging physical environments and 2) allogenic succession in changing physical environments. Our examples of these are from the Devonian Haragan-Bois D'Arc formations of Oklahoma and the Lime Creek Formation of Iowa. This type of succession represents a temporal-spatial mosaic. The Haragan data (unchanging environments) indicate characteristic, intergrading, and ubiquitous species in the brachiopod communities. Most ubiquitous species in the pioneer community were eurytopic opportunists. The Lime Creek data allows testing of the prediction that environmental changes cause regression to an earlier succession stage. The brachiopod communities after environmental changes have more ubiquitous and intergrading eurytopic species. These represent an earlier stage in the succession.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alberstadt, L. P., and Walker, K. R. 1973. Stages of ecological succession in Lower Paleozoic reefs of North America (discus. paper). Geol. Soc. Am. Abstr. with Program. 5:530532.Google Scholar
Alberstadt, L. P., Walker, K. R., and Zurawski, R. P. 1974. Patch reefs in the Carters Limestone (Middle Ordovician) in Tennessee, and vertical zonation in Ordovician reefs. Geol. Soc. Am. Bull. 85:11711182.Google Scholar
Amsden, Thomas. 1958. Stratigraphy and paleontology of the Hunton Group in the Arbuckle Mountain region: Part V—Bois D'Arc articulate brachiopods. Okla. Geol. Surv., Bull. 82.Google Scholar
Amsden, Thomas. 1960. Hunton stratigraphy. Okla. Geol. Surv., Bull. 84.Google Scholar
Amsden, Thomas, and Boucot, Arthur J. 1958. Stratigraphy and paleontology of the Hunton Group in the Arbuckle Mountain region. Okla. Geol. Surv., Bull. 78.Google Scholar
Bretsky, P. W., and Bretsky, S. S. 1975. Succession and repetition of Late Ordovician fossil assemblages from the Nicolet River Valley, Quebec. Paleobiology, 1:225237.CrossRefGoogle Scholar
Clarke, G. L. 1954. Elements of Ecology. (revised printing 1965). 560 pp. John Wiley & Sons: New York, N.Y.Google Scholar
Colinvaux, Paul. 1973. Introduction to Ecology. 621 pp. John Wiley & Sons; New York, N.Y.Google Scholar
Crowley, D. J. 1973. Middle Silurian patch reefs in Gasport Member (Lockport Formation), New York. Am. Assoc. Pet. Geol. 57:283300.Google Scholar
Erdtmann, B. D., and Prezbindowski, D. R. 1974. Niagaran (Middle Silurian) inter-reef fossil burial environments in Indiana. N. Jahrb. Geol. Paläontol. Abh. 144:342372.Google Scholar
Finks, R. M., and Toomey, D. F. 1969. The paleoecology of lower Middle Ordovician reefs or mounds. N.Y. State Geol. Assoc., 41st Annu. Meet., Plattsburg, N.Y. pp. 93102.Google Scholar
Johnson, R. G. 1960. Models and methods for the analysis of the mode of formation of fossil assemblages. Geol. Soc. Am. Bull. 71:10751086.CrossRefGoogle Scholar
Johnson, R. G. 1971. Animal-sediment relations in shallow water benthic communities. Mar. Geol. 11:93104.Google Scholar
Johnson, R. G. 1972. Conceptual models of benthic marine communities. pp. 148159. In: Schopf, T. J. M., ed. Models in Paleobiology. Freeman, Cooper & Co.; San Francisco, Calif.Google Scholar
Kauffman, E. G. 1974a. Cretaceous of the Western Interior United States: a study in community evolution. In: Ziegler, A. M., et al. Principles of Benthic Community Analysis. Comp. Sed. Lab., Univ. of Miami. Sedimenta. 4:12.5–12.14.Google Scholar
Kauffman, E. G. 1974b. Structure, succession, and evolution of Antillean Cretaceous “reefs”: rudistid frameworks. In: Ziegler, A. M., et al. Principles of Benthic Community Analysis. Comp. Sed. Lab., Univ. of Miami. Sedimenta. 4:12.14-12.27.Google Scholar
Kauffman, E. G., and Sohl, N. F. 1974. Structure and evolution of Caribbean Cretaceous rudist frameworks. Verh. Naturforsch. Ges. Basel. 84:399467.Google Scholar
Kendeigh, S. C. 1961. Animal Ecology. 468 pp. Prentice-Hall; Englewood Cliffs, N.J.Google Scholar
LeCompte, Marius. 1959. Certain data on the genesis and ecological character of Frasnian reefs of the Ardennes. Int. Geol. Rev. 1:123.CrossRefGoogle Scholar
Levinton, J. S. 1970. The paleoecological significance of opportunistic species. Lethaia. 3:6978.CrossRefGoogle Scholar
Lorenz, D. M. 1972. Ecological reconstruction by stochastic modeling in a late Ordovician level-bottom community (abstr.). Geol. Soc. Am. Abstr. with Program. 4:580.Google Scholar
MacArthur, R. H. 1960. On the relative abundance of species. Am. Nat. 94:2536.Google Scholar
Mallory, Bob F. 1968. Paleoecologic Study of a Brachiopod Fauna From the Cerro Gordo Member of the Lime Creek Formation (Upper Devonian), North-central Iowa. 53 pp. Unpubl. Ph.D. diss., Univ. of Missouri.Google Scholar
Margalef, Ramon. 1963. Successions in marine populations. Adv. Frontiers of Plant Sci. [Instit. Adv. Sci. and Culture, New Delhi] 2:137188.Google Scholar
Millici, R. C., and Walker, K. R. 1973. Depositional environments—mudbanks and “lakes”—in the Moccasin Formation, Raccoon Valley, Knox County, Tennessee. Tenn. Div. Geol. Bull. 70:152158.Google Scholar
Nicol, David. 1962. The biotic development of some Niagaran reefs—an example of ecological succession or sere. J. Paleontol. 36:172176.Google Scholar
Odum, E. P. 1969. The strategy of ecosystem development. Science. 164:262270.Google Scholar
Odum, E. P. 1971. Fundamentals of Ecology. 574 pp. W. B. Saunders Co.; Philadelphia, Pa.Google Scholar
Payne, R. T. 1963. Ecology of the brachiopod Glottidia pyramidata. Ecol. Monogr. 33:187213.CrossRefGoogle Scholar
Pitcher, Max. 1964. Evolution of Chazyan (Ordovician) reefs of eastern United States and Canada. Bull. Can. Pet. Geol. 12:632691.Google Scholar
Porter, J. W. 1974. Community structure of coral reefs on opposite sides of the Isthmus of Panama. Science. 186:543545.Google Scholar
Richards, R. P. 1972. Autecology of Richmondian brachiopods (Late Ordovician) of Indiana and Ohio. J. Paleontol. 46:386405.Google Scholar
Rodgers, John. 1953. Geologic map of east Tennessee; explanatory text. 168 pp. Tenn. Div. Geol. Bull. 58, Part II.Google Scholar
Rudwick, M. J. S. 1962. Notes on the ecology of brachiopods in New Zealand. R. Soc. N.Z. Trans. Zool. 1:327335.Google Scholar
Rudwick, M. J. S. 1965. Ecology and paleoecology. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology. Part H: Brachiopoda. Geol. Soc. Am. H199H214.Google Scholar
Sanders, Howard L. 1968. Marine benthic diversity: a comparative study. Am. Nat. 102:243282.CrossRefGoogle Scholar
Slobodkin, L. B., and Sanders, H. L. 1969. On the contribution of environmental predictability to species diversity. In: Diversity and Stability in Ecological Systems. Brookhaven Symp. in Biol. 22:8295.Google Scholar
Stauffer, K. W. 1968. Silurian-Devonian reef complex near Nowshera, West Pakistan. Geol. Soc. Am. Bull. 79:13311350.Google Scholar
Surlyk, Finn. 1972. Morphological adaptations and population structures of the Danish Chalk brachiopods (Maastrichtian, Upper Cretaceous). Det K. Dan. Vidensk. Selsk. Biol. Skr. 19:157.Google Scholar
Toomey, D. F. 1970. An unhurried look at the lower Ordovician mound horizon, southern Franklin Mountains, Texas. J. Sed. Petrol. 40:13181334.Google Scholar
Walker, K. R. 1972. Community ecology of the Middle Ordovician Black River Group of New York State. Geol. Soc. Am. Bull. 83:24992524.Google Scholar
Walker, K. R. 1974a. Mud substrata. In: Ziegler, A. M., et al. Principles of Benthic Community Analysis. Comp. Sed. Lab., Univ. of Miami. Sedimenta. 4:5.15.11.Google Scholar
Walker, K. R. 1974b. Reefs through time: a synoptic review. In: Ziegler, A. M., et al. Principles of Benthic Community Analysis. Comp. Sed. Lab., Univ. of Miami. Sedimenta. 4:8.18.20.Google Scholar
Walker, K. R. 1974c. Community patterns: Ordovician of Tennessee. In: Ziegler, A. M., et al. Principles of Benthic Community Analysis. Comp. Sed. Lab., Univ. of Miami. Sedimenta. 4:9.19.9.Google Scholar
Walker, K. R., and Bambach, R. K. 1974. Analysis of communities. In: Ziegler, A. M., et al. Principles of Benthic Community Analysis. Comp. Sed. Lab., Univ. of Miami. Sedimentia 4:2.12.10.Google Scholar
Walker, K. R., and Ferrigno, K. F. 1973. Major Middle Ordovician reef tract in East Tennessee. Am. J. Sci. 273A:294325.Google Scholar
Walker, K. R., and Parker, W. C. (in preparation). Population structure of opportunistic and equilibrium species in an Ordovician ecological succession.Google Scholar
Williams, Alwyn. 1975. Prospects for Ordovician correlation. Proc. of Int. Symp. on the Ord. Syst., Spec. Publ. of the Palaeontol. Assoc., Lond. (in press).Google Scholar
Ziegler, A. M., Walker, K. R., Anderson, E. J., Kauffman, E. G., Ginsburg, R. N., and James, N. P. 1974. Principles of Benthic Community Analysis. Comp. Sed. Lab., Univ. of Miami. Sedimenta. 4:1.112.7.Google Scholar