Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T23:28:37.022Z Has data issue: false hasContentIssue false

Early Mesozoic (Late Triassic-Early Jurassic) Tethyan brachiopod biofacies: possible evolutionary intra-phylum niche replacement within the Brachiopoda

Published online by Cambridge University Press:  08 February 2016

Michael R. Sandy*
Affiliation:
Department of Geology, University of Dayton, 300 College Park, Dayton, Ohio 45469-2364

Abstract

Distributions of brachiopods from low-latitude paleogeographic settings, primarily in the Tethyan Ocean of southern Europe, with additional data from North America allow some observations on the bathymetric distribution of early Mesozoic brachiopod orders. Norian and latest Triassic (Rhaetian) brachiopod biofacies are dominated in shallowest waters by short-looped terebratulids (Terebratulidina) while spire-bearing athyrids (Athyrida) are common components of deeper-water environments in the latest Triassic. In the late Early Jurassic (Pliensbachian), shallow-water brachiopod faunas are dominated by rhynchonellids, short-looped terebratulids are commoner in relatively deeper shelf waters, and spiriferids and long-looped terebratulids (Terebratellidina) are abundant in deeper-water shelf environments.

Following the end-Triassic extinction event there appears to be niche-replacement in deep-water shelf environments of Late Triassic athyrids by spiriferids and long-looped terebratulids in the Early Jurassic. Rhynchonellids appear to have diversified into shallowest water environments; specialized short-looped terebratulids may have occupied deeper-water niches that resulted ultimately in the success of the enigmatic Pygopidae later in the Jurassic and Cretaceous.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ager, D. V. 1965. The adaptation of Mesozoic brachiopods to different environments. Palaeogeography, Palaeoclimatology, Palaeoecology 1:143172.CrossRefGoogle Scholar
Ager, D. V. 1987. Why the rhynchonellid brachiopods survived and the spiriferids did not: a suggestion. Palaeontology 30:853857.Google Scholar
Ager, D. V., Cossey, S. P. J., Mullin, P. R., and Walley, C. D. 1976. Brachiopod ecology in mid-Palaeozoic sediments near Khenifra, Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology 20:171185.CrossRefGoogle Scholar
Benton, M. J. 1986. More than one event in the late Triassic mass extinction. Nature (London) 321:857861.CrossRefGoogle Scholar
Blake, D. B., and Guensburg, T. E. 1990. Predatory asteroids and the fate of brachiopods—a comment. Lethaia 23:429430.CrossRefGoogle Scholar
Bottjer, D. J., and Jablonski, D. 1988. Paleoenvironmental patterns in the evolution of Post-Paleozoic benthic marine invertebrates. Palaios 3:540560.CrossRefGoogle Scholar
Donovan, S. K., and Gale, A. S. 1990. Predatory asteroids and the decline of the articulate brachiopods. Lethaia 23:7786.CrossRefGoogle Scholar
Dulai, A. 1993. Hettangian (Early Jurassic) megafauna and paleogeography of the Bakony Mtns (Hungary). Pp. 3137in Palfy, and Vörös, 1993.Google Scholar
Emig, C. C. 1992. Functional disposition of the lophophore in living Brachiopoda. Lethaia 25:291302.CrossRefGoogle Scholar
Fürsich, F. T., and Hurst, J. M. 1974. Environmental factors determining the distribution of brachiopods. Palaeontology 17:879900.Google Scholar
Fürsich, F. T., and Wendt, J. 1977. Biostratinomy and palaeoecology of the Cassian Formation (Triassic) of the Southern Alps. Palaeogeography, Palaeoclimatology, Palaeoecology 22:257323.CrossRefGoogle Scholar
Gaetani, M. 1970. Fauna hettangiane della parte orientale della provincia di Bergamo. Rivista Italiana de Paleontologia 76:355442.Google Scholar
Gale, A. S., and Donovan, S. K. 1992. Predatory asteroids and articulate brachiopods: a reply. Lethaia 25:346348.CrossRefGoogle Scholar
Golebiowski, R. 1989. Stratigraphie und Biofazies der Kössener Formation (Obertrias, Nördliche Kalkalpen). Ph.D. dissertation. University of Vienna, Austria.Google Scholar
Golebiowski, R. 1991. Becken und Riffe der alpinen Obertrias. Pp. 80119in Exkursionen im Jungpaläozoikum und Mesozoikum Osterreichs. Osterreiche Palaontologische Gesellschaft, Vienna.Google Scholar
Gould, S. J., and Calloway, C. B. 1980. Clams and brachiopods—ships that pass in the night. Paleobiology 6:383396.CrossRefGoogle Scholar
Hallam, A. 1986. The Pliensbachian and Tithonian extinction events. Nature (London) 319:765768.CrossRefGoogle Scholar
Hallam, A. 1990. The end-Triassic mass extinction event. Pp. 577583in Sharpton, V. L. and Ward, P. D., eds. Global catastrophies in earth history; an interdisciplinary conference on impacts, volcanism, and mass mortality. Geological Society of America Special Paper 247. Geological Society of America, Denver.CrossRefGoogle Scholar
Hallam, A., and Miller, A. I. 1988. Extinction and survival in the Bivalvia. Pp. 121138in Larwood, G. P., ed. Extinction and Survival in the Fossil Record. The Systematics Association Special Volume 34. Clarendon Press, Oxford.Google Scholar
Hogler, J. A. 1990. Community replacement in the Upper Triassic Luning Formation, Shoshone Mountains, Nevada. Geological Society of America Abstracts with Programs 22(3):29.Google Scholar
Johnson, A. L. A., and Simms, M. J. 1989. The timing and cause of Late Triassic marine invertebrate extinctions: evidence from scallops and crinoids. Pp. 174194in Donovan, S. K., ed. Mass extinctions: processes and evidence. Columbia University Press, New York.Google Scholar
Jones, B. 1991. Methods for delineating brachiopod associations. Pp. 211218in MacKinnon, et al. 1991.Google Scholar
MacKinnon, D. I., Lee, D. E., and Campbell, J. D., eds. 1991. Brachiopods through time. Balkema, Rotterdam.Google Scholar
Michalik, J. 1987. Development and structures of the Triassic and Liassic brachiopod communities. Pp. 3952in Pororny, V., ed. Contribution of Czechoslovak palaeontology to evolutionary sciences. Karlova University, Prague.Google Scholar
Miller, A. I. 1990. Bivalves. Pp. 143161in McNamara, K. J., ed. Evolutionary trends. The University of Arizona Press, Tucson.Google Scholar
Newell, N. D. 1962. Paleontological gaps and geochronology. Journal of Paleontology 36:592610.Google Scholar
Pálfy, J. 1991. Paleoecological significance of Anisian (Middle Triassic) brachiopod assemblages from the Balaton Highland, Hungary. Pp. 241246in MacKinnon, et al. 1991.Google Scholar
Pálfy, J., and Vörös, A., eds. 1993. Mesozoic brachiopods of Alpine Europe. Hungarian Geological Society, Budapest.Google Scholar
Peck, L. S., Curry, G. B., Ansell, A. D., and James, M. 1989. Temperature and starvation effects on the metabolism of the brachiopod Terebratulina retusa. Historical Biology 2:101110.CrossRefGoogle Scholar
Pratt, B. R. 1991. Asteroid impact on brachiopods? Lethaia 24:457459.CrossRefGoogle Scholar
Prosorovskaya, E. L., and Voros, A. 1988. Pliensbachian, Bajocian, and Callovian Brachiopoda. Pp. 6170in Rakus, M., Dercourt, J., and Nairn, A. E. M., eds. Evolution of the Northern Margin of Tethys, Vol. 1. Memoires de la Société Géologique de France, Nouvelle Série 154. Société Géologique de France, Paris.Google Scholar
Richardson, J. R. 1981. Brachiopods in mud: resolution of a dilemma. Science 211:11611163.CrossRefGoogle ScholarPubMed
Rhodes, M. C., and Thayer, C. W. 1991. Effects of turbidity on suspension feeding: are brachiopods better than bivalves? Pp. 191196in MacKinnon, et al. 1991.Google Scholar
Rudwick, M. J. S. 1970. Living and fossil brachiopods. Hutchinson, London.Google Scholar
Sandy, M. R. 1988. Tithonian Brachiopoda. Pp. 7174in Evolution of the northern margin of Tethys, Vol. 1. Mémoires de la Société Géologique de France, Paris, Nouvelle Série No. 154.Google Scholar
Sandy, M. R. 1994a. Triassic-Jurassic articulate brachiopods from the Pucará Group, Central Peru, and description of the brachidial net in the spiriferid Spondylospira. Palaeontographica A 233:99126.CrossRefGoogle Scholar
Sandy, M. R. 1994b. Early Mesozoic (Late Triassic-Early Jurassic) Tethyan brachiopod biofacies: illustrations of possible evolutionary intra-phylum niche replacement. Shallow Tethys 4, Abstract Volume. Fourth International Symposium on Shallow Tethys, Albrechtsberg, Austria.CrossRefGoogle Scholar
Sandy, M. R., and Stanley, G. D. Jr. 1993. Late Triassic brachiopods from the Luning Formation, Nevada, U.S.A. and their palaeobiogeographical significance. Palaeontology 36:439480.Google Scholar
Sepkoski, J. J. Jr., and Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic marine communities in space and time. Pp. 153190in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press.Google Scholar
Sepkoski, J. J. Jr., and Sheehan, P. M. 1983. Diversification, faunal change, and community replacement during the Ordovician radiations. Pp. 673717in Tevesz, M. J. S. and McCall, P. L., eds. Biotic interations in Recent and fossil benthic communities. Plenum, New York.CrossRefGoogle Scholar
Siblik, M. 1993. Review of the Early Liassic brachiopods of the Northern Calcareous Alps. Pp. 127132in Pálfy, and Vörös, 1993.Google Scholar
Stanley, G. D. Jr., Gonzalez-Leon, C., Sandy, M. R., Senowbari-Daryan, B., Doyle, P., Tamura, M., and Erwin, D. H. 1994. Upper Triassic invertebrates from the Antimonio Formation, Sonora, Mexico. Memoirs of the Paleontological Society 36:133.Google Scholar
Tchoumatchenco, P. 1972. Thanatocoenoses and biotopes of Lower Jurassic brachiopods in Central and Western Bulgaria. Palaeogeography, Palaeoclimatology, Palaeoecology 12:227242.CrossRefGoogle Scholar
Tchoumatchenco, P. 1993. The horizontal distribution of brachiopods during the Zeilleria quadrifida Zone (Late Carixian-Early Domerian, Early Jurassic) in Bulgaria. Pp. 143150in Pálfy, and Vörös, 1993.Google Scholar
Thayer, C. W. 1990. Articulate brachiopods as low energy organisms: ecological and evolutionary consequences. P. 91, in Lee, D. E., and Campbell, J. D., eds. Second International Brachiopod Congress, Abstracts, University of Otago, Dunedin, New Zealand. University of Otago, Dunedin.Google Scholar
Vermeij, G. J. 1992. Asteroids and articulates: is there a causal link? Lethaia 25:431432.Google Scholar
Vogel, K. 1966. Eine funktionsmorphologische Studie an der Brachiopoden gattung Pygope (Malm bis Unterkeride). Neues Jahrbüch für Geologie und Paläontologie, Abhandlungen 125:423442.Google Scholar
Vörös, A. 1986. Brachiopod palaeoecology on a Tethyan Jurassic seamount (Pliensbachian, Bakony Mountains, Hungary). Palaeogeography, Palaeoclimatology, Palaeoecology 57:241271.CrossRefGoogle Scholar
Vörös, A. 1991. Hierlatzkalk-a peculiar Austro-Hungarian Jurassic Facies. Pp. 145154in Lobitzer, H. and Császár, G., eds. Jubiläumsschrift 20 Jahre Geologische Zusammenarbeit Österreich-Ungarn. Austrian Geological Survey, Vienna.Google Scholar
Vörös, A. 1993. Jurassic brachiopods of the Bakony Mts. (Hungary): global and local effects on changing diversity. Pp. 179187in Pálfy, and Vörös, 1993.Google Scholar
Winter, J. 1971. Brachiopoden-Morphologie und Biotop-ein Vergleich quantitativer Brachiopoden-Spektren aus Ahrdorf-Schichten (Eifelium) der Eifel. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1971(2):102132.Google Scholar