Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T11:20:31.978Z Has data issue: false hasContentIssue false

The dynamics of evolutionary stasis

Published online by Cambridge University Press:  08 April 2016

Niles Eldredge
Affiliation:
Division of Paleontology, American Museum of Natural History, Central Park West at Seventy-ninth Street, New York, New York 10024. E-mail: [email protected]
John N. Thompson
Affiliation:
Department of Ecology and Evolutionary Biology, A316 Earth and Marine Sciences Building, University of California, Santa Cruz, California 95060. E-mail: [email protected]
Paul M. Brakefield
Affiliation:
Institute of Biology, Leiden University, Post Office Box 9516, 2300 RA Leiden, The Netherlands. E-mail: [email protected]
Sergey Gavrilets
Affiliation:
Department of Ecology and Evolutionary Biology and Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996. E-mail: [email protected]
David Jablonski
Affiliation:
Department of Geophysical Sciences, 5734 South Ellis Avenue, University of Chicago, Chicago, Illinois 60637. E-mail: [email protected]
Jeremy B. C. Jackson
Affiliation:
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92039. E-mail: [email protected]
Richard E. Lenski
Affiliation:
Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824. E-mail: [email protected]
Bruce S. Lieberman
Affiliation:
Departments of Geology and Ecology and Evolutionary Biology, University of Kansas, 120 Lindley Hall, Lawrence, Kansas 66045. E-mail: [email protected]
Mark A. McPeek
Affiliation:
Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755. E-mail: [email protected]
William Miller III
Affiliation:
Department of Geology, Humboldt State University, 1 Harpst Street, Arcata, California 95521. E-mail: [email protected]

Abstract

The fossil record displays remarkable stasis in many species over long time periods, yet studies of extant populations often reveal rapid phenotypic evolution and genetic differentiation among populations. Recent advances in our understanding of the fossil record and in population genetics and evolutionary ecology point to the complex geographic structure of species being fundamental to resolution of how taxa can commonly exhibit both short-term evolutionary dynamics and long-term stasis.

Type
Macroevolutionary Patterns within and among Clades
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barton, N. H., and Charlesworth, B. 1984. Genetic revolutions, founder effects, and speciation. Annual Review of Ecology and Systematics 15:133164.Google Scholar
Barton, N. H., and Partridge, L. 2000. Limits to natural selection. BioEssays 22:10751084.Google Scholar
Beldade, P., Koops, K., and Brakefield, P. M. 2002. Developmental constraints versus flexibility in morphological evolution. Nature 416:844847.Google Scholar
Bennett, K. D. 1990. Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology 16:1121.Google Scholar
Brakefield, P. M., French, V., and Zwaan, B. J. 2003. Development and the genetics of evolutionary change within insect species. Annual Review of Ecology, Evolution and Systematics 34:633660.Google Scholar
Brett, C. E., and Baird, G. 1995. Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian Basin. Pp. 285315in Anstey, R. and Erwin, D. H., eds. Speciation in the fossil record. Columbia University Press, New York.Google Scholar
Burdon, J. J., and Thrall, P. H. 1999. Spatial and temporal patterns in coevolving plant and pathogen associations. American Naturalist 153:S15S33.Google Scholar
Burdon, J. J., and Thrall, P. H. 2000. Coevolution at multiple spatial scales: Linum marginale-Melampsora lini—from the individual to the species. Evolutionary Ecology 14:261281.Google Scholar
Charlesworth, B., Lande, R., and Slatkin, M. 1982. A neo-Darwinian commentary on macroevolution. Evolution 36:474498.Google Scholar
Coope, G. R. 1979. Late Cenozoic fossil Coleoptera: evolution, biogeography and ecology. Annual Review of Ecology and Systematics 10:247267.Google Scholar
Cooper, V. S., and Lenski, R. E. 2000. The population genetics of ecological specialization in evolving E. coli populations. Nature 407:736739.Google Scholar
Coyne, J. A., Barton, N. H., and Turelli, M. 1997. A critique of Sewall Wright's shifting balance theory of evolution. Evolution 51:643671.Google Scholar
Darwin, C. D. 1871. The descent of man, and selection in relation to sex. John Murray, London.Google Scholar
Davis, M. 1983. Quaternary history of deciduous forests of eastern North America and Europe. Annals of the Missouri Botanical Garden 20:550563.Google Scholar
Davis, M. B., and Shaw, R. G. 2001. Range shifts and adaptive responses to Quaternary climate change. Science 292:673679.Google Scholar
Ehrlich, P. R., and Raven, P. H. 1964. Butterflies and plants: a study in coevolution. Evolution 18:586608.Google Scholar
Eldredge, N. 1971. The allopatric model and phylogeny in Paleozoic invertebrates. Evolution 25:156167.Google Scholar
Eldredge, N. 1989. Macroevolutionary dynamics: species, niches and adaptive peaks. McGraw-Hill, New York.Google Scholar
Eldredge, N. 2003. The sloshing bucket: how the physical realm controls evolution. Pp. 332in Crutchfield, J. and Schuster, P., eds. Evolutionary dynamics: exploring the interplay of selection, accident, neutrality, and function (SFI Studies in the Sciences of Complexity Series). Oxford University Press, New York.Google Scholar
Eldredge, N., and Gould, S. J. 1972. Punctuated equilibrium: an alternative to phyletic gradualism. Pp. 82115in Schopf, T. J. M., ed. Models in paleobiology. Freeman, Cooper, San Francisco.Google Scholar
Falconer, D. S., and Mackay, T. 1996. Introduction to quantitative genetics, 4th ed.Longman, London.Google Scholar
Futuyma, D. J. 1987. On the role of species in anagenesis. American Naturalist 130:465473.Google Scholar
Gandon, S., Capowiez, Y., Dubois, Y., Michalakis, Y., and Olivieri, I. 1996. Local adaptation and gene-for-gene coevolution in a metapopulation model. Proceedings of the Royal Society of London B 263:10031009.Google Scholar
Garcia-Ramos, G., and Kirkpatrick, M. 1997. Genetic models of adaptation and gene flow in peripheral populations. Evolution 51:2128.Google Scholar
Gavrilets, S. 1996. On phase three of the shifting-balance theory. Evolution 50:10341041.Google Scholar
Gavrilets, S. 1997. Evolution and speciation on holey adaptive landscapes. Trends in Ecology and Evolution 13:307312.Google Scholar
Gavrilets, S. 1999. A dynamical theory of speciation on holey adaptive landscapes. American Naturalist 154:122.Google Scholar
Geary, D. H. 1995. The importance of gradual change in species-level transitions. Pp. 6786in Erwin, D. H. and Anstey, R. L., eds. New approaches to speciation in the fossil record. Columbia University Press, New York.Google Scholar
Gingerich, P. D. 1976. Paleontology and phylogeny: patterns of evolution at the species level in Early Tertiary mammals. American Journal of Science 276:128.Google Scholar
Gingerich, P. D. 1983. Rates of evolution: effects of time and temporal scaling. Science 222:159161.Google Scholar
Gomulkiewicz, R., and Holt, R. D. 1995. When does evolution by natural selection prevent extinction? Evolution 49:201207.Google Scholar
Gomulkiewicz, R., Thompson, J. N., Holt, R. D., Nuismer, S. L., and Hochberg, M. E. 2000. Hot spots, cold spots, and the geographic mosaic theory of coevolution. American Naturalist 156:156174.Google Scholar
Gould, S. J., and Eldredge, N. 1977. Punctuated equilibrium: the tempo and mode of evolution reconsidered. Paleobiology 3:115151.Google Scholar
Grant, P. R. 1986. Ecology and evolution of Darwin's finches. Princeton University Press, Princeton, N.J.Google Scholar
Hanski, I., and Gilpin, M. E. 1997. Metapopulation biology: ecology, genetics, and evolution. Academic Press, San Diego.Google Scholar
Hoekstra, H. E., Hoekstra, J. M., Berrigan, D., Vignieri, S. N., Hoang, A., Hill, C. E., Beerli, P., et al. 2001. Strength and tempo of directional selection in the wild. Proceedings of the National Academy of Sciences USA 98:91579160.Google Scholar
Huey, R. B., Gilchrist, G. W., Carlson, M. L., Berrigan, D., and Serra, L. 2000. Rapid evolution of a geographic cline in size in an introduced fly. Science 287:308309.Google Scholar
Jablonski, D. 2000. Micro- and macroevolution scale and hierarchy in evolutionary biology and paleobiology. In Erwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective. Paleobiology 26(Suppl. to No. 4):1552.Google Scholar
Jackson, J. B. C., and Cheetham, A. H. 1999. Tempo and mode of speciation in the sea. Trends in Ecology and Evolution 14:7277.Google Scholar
Kawata, M. 2002. Invasion of vacant niches and subsequent sympatric speciation. Proceedings of the Royal Society of London B 269:5563.Google Scholar
Kirkpatrick, M., and Barton, N. H. 1997. Evolution of a species' range. American Naturalist 150:123.Google Scholar
Lambeck, K., and Chappell, J. 2001. Sea level change through the last glacial cycle. Science 292:679686.Google Scholar
Lande, R. 1985. The fixation of chromosomal rearrangements in a subdivided population with local extinction and colonization. Heredity 54:323332.Google Scholar
Lenski, R. E., and Travisano, M. 1994. Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proceedings of the National Academy of Sciences USA 91:68086814.Google Scholar
Levinton, J. S. 1983. Stasis in progress: the empirical basis of macroevolution. Annual Review of Ecology of Systematics 14:103137.Google Scholar
Lieberman, B. S., and Dudgeon, S. 1996. An evaluation of stabilizing selection as a mechanism for stasis. Palaeogeography, Palaeoclimatology and Palaeoecology 127:229238.Google Scholar
Lieberman, B. S., Brett, C. E., and Eldredge, N. 1995. A study of stasis and change in two species lineages from the Middle Devonian of New York State. Paleobiology 21:1527.Google Scholar
Lynch, M., and Force, A. 2000. The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459473.Google Scholar
Mani, G. S., and Clarke, B. C. C. 1990. Mutational order: a major stochastic process in evolution. Proceedings of the Royal Society of London B 240:2937.Google Scholar
Smith, J. Maynard 1983. The genetics of stasis and punctuation. Annual Review of Genetics 17:1125.Google Scholar
Mayr, E. 1954. Change of genetic environment and evolution. Pp. 157180in Huxley, J., Hardy, A.C., and Ford, E. B., eds. Evolution as a process. Allen and Unwin, London.Google Scholar
McPeek, M. A. 1997. Measuring phenotypic selection on an adaptation: lamellae of damselflies experiencing dragonfly predation. Evolution 51:459466.Google Scholar
McPeek, M. A. 1998. The consequences of changing the top predator in a food web: a comparative experimental approach. Ecological Monographs 68:123.Google Scholar
McPeek, M. A. 2000. Predisposed to adapt: clade-level differences in characters affecting swimming performance in damselflies. Evolution 54:20722080.Google ScholarPubMed
McPeek, M. A., and Brown, J. M. 2000. Building a regional species pool: diversification of the Enallagma damselflies of eastern North American waters. Ecology 81:904920.Google Scholar
Miller, W. III. 2003. A place for phyletic evolution within the theory of punctuated equilibria: Eldredge pathways. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 2003:463476.Google Scholar
Mongold, J. A., Bennett, A. F., and Lenski, R. E. 2001. Evolutionary adaptation to temperature. VII. Extension of the upper thermal limit of Escherichia coli. Evolution 53:386394.Google Scholar
Moore, F. B.-G., Rozen, D. E., and Lenski, R. E. 2000. Pervasive compensatory adaptation in Escherichia coli. Proceedings of the Royal Society of London B 267:515522.CrossRefGoogle ScholarPubMed
Nuismer, S. L., Thompson, J. N., and Gomulkiewicz, R. 2000. Coevolutionary clines across selection mosaics. Evolution 54:11021115.Google Scholar
Ohta, T. 1972. Population size and rate of evolution. Journal of Molecular Evolution 1:305314.Google Scholar
Pellmyr, O., Leebens-Mack, J., and Thompson, J. N. 1998. Herbivores and molecular clocks as tools in plant biogeography. Biological Journal of the Linnean Society 63:367378.Google Scholar
Reznick, D. N., Shaw, F. H., Rodd, F. H., and Shaw, R. G. 1997. Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275:19341936.Google Scholar
Rieseberg, L. H. 1997. Hybrid origins of plant species. Annual Review of Ecology and Systematics 28:359389.Google Scholar
Rutherford, S. L., and Lindquist, S. 1998. Hsp90 as a capacitor for morphological evolution. Nature 396:336342.Google Scholar
Sandstrom, J. P., Russell, J. A., White, J. P., and Moran, N. A. 2001. Independent origins and horizontal transfer of bacterial symbionts of aphids. Molecular Ecology 10:217228.Google Scholar
Schemske, D. W., and Bierzychudek, P. 2001. Evolution of flower color in the desert annual Linanthus parryae: Wright revisited. Evolution 55:12691282.Google Scholar
Sheldon, P. R. 1987. Parallel gradualistic evolution of Ordovician trilobites. Nature 330:561563.Google Scholar
Sniegowski, P. D., Gerrish, P. J., and Lenski, R. E. 1997. Evolution of high mutation rates in experimental populations of Escherichia coli. Nature 387:703705.Google Scholar
Soltis, D. E., and Soltis, P. S. 1999. Polyploidy: recurrent formation and genome evolution. Trends in Ecology and Evolution 14:348352.Google Scholar
Stanley, S. M., and Yang, X. 1987. Approximate evolutionary stasis for bivalve morphology over millions of years: a multivariate, multilineage study. Paleobiology 13:1131119.Google Scholar
Tachida, H., and Ilizuka, M. 1991. Fixation probability in spatially changing environments. Genetical Research 58:243251.Google Scholar
Thomas, C. D., Bodsworth, E. J., Wilson, R. J., Simmons, A. D., Davies, Z. G., Musche, M., and Conradt, L. 2001. Ecological and evolutionary processes at expanding range margins. Nature 411:577581.Google Scholar
Thompson, J. N. 1994. The coevolutionary process. University of Chicago Press, Chicago.Google Scholar
Thompson, J. N. 1997. Evaluating the dynamics of coevolution among geographically structured populations. Ecology 78:16191623.Google Scholar
Thompson, J. N. 1998. Rapid evolution as an ecological process. Trends in Ecology and Evolution 13:329332.Google Scholar
Thompson, J. N. 1999a. The evolution of species interactions. Science 284:21162118.Google Scholar
Thompson, J. N. 1999b. Coevolution and escalation: are ongoing coevolutionary meanderings important? American Naturalist 153:S92S93.Google Scholar
Thrall, P. H., and Burdon, J. J. 1997. Host-pathogen dynamics in a metapopulation context: the ecological and evolutionary consequences of being spatial. Journal of Ecology 85:743753.Google Scholar
Travisano, M., Mongold, J. A., Bennet, A. F., and Lenski, R. E. 1995. Experimental tests of the roles of adaptation, chance, and history in evolution. Science 267:8790.Google Scholar
Valentine, J. W., and Jablonski, D. 1993. Fossil communities: compositional variation at many time scales. Pp. 341349in Ricklefs, R. E. and Schluter, D., eds. Species diversity in ecological communities. University of Chicago Press, Chicago.Google Scholar
Van Valen, L. M. 1982. Integration of species: stasis and biogeography. Evolutionary Theory 6:99112.Google Scholar
Vrba, E. S. 1985. Environment and evolution: alternative causes of the temporal distribution of evolutionary events. South African Journal of Science 81:229236.Google Scholar
Wade, M. J., and Goodnight, C. J. 1998. The theories of Fisher and Wright in the context of metapopulations: when nature does many small experiments. Evolution 52:15371553.Google Scholar
Wake, D. B., Roth, G., and Wake, M. H. 1983. On the problem of stasis in organismal evolution. Journal of Theoretical Biology 101:211224.Google Scholar
Weber, K. E. 1996. Large genetic change at small fitness cost in large populations of Drosophila melanogaster selection for wind tunnel flight: rethinking fitness surfaces. Genetics 144:205213.Google Scholar
Webster, A. J., Payne, R. J. H., and Pagel, M. 2003. Molecular phylogenies link rates of evolution and speciation. Science 301:478.Google Scholar
Williamson, P. G. 1987. Selection or constraint? A proposal on the mechanism for stasis. Pp. 129142in Campbell, K. S. W. and Day, M. F., eds. Rates of evolution. Allen and Unwin, London.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trend, rhythms, and aberrations in global climates 65 Ma to present. Science 292:686693.Google Scholar