Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-23T03:32:26.419Z Has data issue: false hasContentIssue false

Does morphology reflect osteohistology-based ontogeny? A case study of Late Cretaceous pterosaur jaw symphyses from Hungary reveals hidden taxonomic diversity

Published online by Cambridge University Press:  08 April 2016

Edina Prondvai
Affiliation:
Hungarian Academy of Sciences – Eötvös Loránd University “Lendület” Dinosaur Research Group, Eötvös Loránd University, Budapest, Hungary. E-mail: [email protected]
Emese R. Bodor
Affiliation:
Hungarian Geological and Geophysical Institute, Geological and Geophysical Collections, Budapest, Hungary; Eötvös Loránd University, Department of Palaeontology, Budapest, Hungary
Attila Ősi
Affiliation:
Hungarian Academy of Sciences – Eötvös Loránd University “Lendület” Dinosaur Research Group, Eötvös Loránd University, Budapest, Hungary. E-mail: [email protected]

Abstract

With a single complete mandible and 56 mandibular symphyseal fragments of various sizes, the Late Cretaceous Hungarian azhdarchid material has been considered one of the most extensive monospecific pterosaur assemblages in the world. Representing a broad size range, these elements have been thought to demonstrate a developmental series of Bakonydraco galaczi. As such, they were ideal to test whether absolute size and/or morphology reliably indicate relative ontogenetic stages in this pterosaur. Forty-five specimens were selected for multivariate morphometrics and classified into four size classes. After acquiring the morphometric data set, we thin-sectioned eight symphyses representing all size groups and classified them into relative ontogenetic stages based on qualitative microstructural inspection prior to quantitative histological analyses. Microstructural characters suggestive of developmental state were then quantified for intra- and interindividual uni- and multivariate analyses to test the correspondence among the results of qualitative and quantitative analyses. In contrast to our expectations, histological features identified the smallest specimen as an adult and not an early juvenile. The substantial size difference between this specimen and other adults, along with its distinct microanatomical and histological features, implies the presence of at least two pterosaur taxa in this symphysis assemblage. This hypothesis is further supported by multivariate morphometrics, which separate the smallest symphyses from all other specimens that form one continuous group. Although the latter group also shows considerable size variability in corresponding ontogenetic stages, this suggests developmental plasticity rather than the presence of even more taxa, and indicates that symphysis size and morphology are poor indicators of skeletal maturity in these animals. Hence, bone histology is an important independent test of the assessment of ontogenetic stage using size and morphology.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Afifi, A., Clark, V. A., May, S., and Raton, B. 2004. Computer-aided multivariate analysis, 4th ed. Chapman and Hall/CRC Press, Boca Raton, FL.Google Scholar
Andrews, R. M. 1982. Patterns of growth in reptiles. Pp. 273320inGans, C. and Pough, F. H., eds. Biology of the Reptilia. Academic Press, London.Google Scholar
Ascenzi, A., and Bonucci, E. 1967. The tensile properties of single osteons. Anatomical Record 158:375386.Google Scholar
Ascenzi, A., and Bonucci, E. 1968. The compressive properties of single osteons. Anatomical Record 161:377392.Google Scholar
Badgley, C. 1986. Counting individuals in mammalian fossil assemblages from fluvial environments. Palaios 1:328338.Google Scholar
Bennett, S. C. 1993. The ontogeny of Pteranodon and other pterosaurs. Paleobiology 19:92106.Google Scholar
Bennett, S. C. 1995. A statistical study of Rhamphorhynchus from the southern limestone of Germany: year classes of a single large species. Journal of Vertebrate Paleontology 69:569580.CrossRefGoogle Scholar
Bennett, S. C. 1996. Year-classes of pterosaurs from the Solnhofen Limestone of Germany: taxonomic and systematic implications. Journal of Vertebrate Paleontology 16:432444.CrossRefGoogle Scholar
Brinkman, D. 1988. Size-independent criteria for estimating relative age in Ophiacodon and Dimetrodon (Reptilia, Pelycosauria) from the Admiral and lower Belle Plains formations of west-central Texas. Journal of Vertebrate Paleontology 8:172180.Google Scholar
Chinsamy, A. 1994. Dinosaur bone histology: implications and inferences. Pp. 213227inRosenberg, G. D. and Wolberg, D. L., eds. DinoFest. Paleontological Society Special Publication 7:213227.Google Scholar
Chinsamy-Turan, A. 2005. The microstructure of dinosaur bone: deciphering biology with fine-scale techniques. Johns Hopkins University Press, Baltimore.Google Scholar
Chinsamy, A., Codurniu, L., and Chiappe, L. 2008. Developmental growth patterns of the filter-feeder pterosaur, Pterodaustro guiñazui. Biology Letters 4:282285.Google Scholar
Chinsamy, A., Codurniu, L., and Chiappe, L. 2009. Palaeobiological implications of the bone histology of Pterodaustro guinazui. Anatomical Record 292:14621477.Google Scholar
Cormack, D. H. 1987. Ham's histology. Lippincott William and Wilkins, New York.Google Scholar
de Ricqlès, A. 1983. Cyclical growth in the long limb bones of a sauropod dinosaur. Acta Palaeontologica Polonica 28:225232.Google Scholar
de Ricqlès, A., Padian, K., Horner, J. R., and Francillon-Viellot, H. 2000. Paleohistology of the bones of pterosaurs (Reptilia: Archosauria): anatomy, ontogeny and biochemical implications. Zoological Journal of the Linnean Society 129:349385.Google Scholar
de Ricqlès, A., Padian, K., Horner, J. R., Lamm, E.-T., and Myhrvold, N. 2003. Osteohistology of Confuciusornis sanctus (Theropoda: Aves). Journal of Vertebrate Paleontology 23:373386.CrossRefGoogle Scholar
de Ricqlès, A., Castanet, J., and Francillon-Vieillot, H. 2004. The ‘message' of bone tissue in paleoherpetology. Italian Journal of Zoology 71 (Suppl. 1):312.CrossRefGoogle Scholar
de Ricqlès, A., Padian, K., Knoll, F., and Horner, J. R. 2008. On the origin of high growth rates in archosaurs and their ancient relatives: complementary histological studies on Triassic archosauriforms and the problem of a “phylogenetic signal” in bone histology. Annales de Paléontologie 94:5776.Google Scholar
de Ricqlès, A., Mateus, O., Antunes, M. T., and Taquet, P. 2001. Histomorphogenesis of embryos of Upper Jurassic theropods from Lourinhã (Portugal). Comptes Rendus de l'Académie des Sciences, série IIA 332:647656.Google Scholar
Erickson, G. M. 2005. Assessing dinosaur growth patterns: a microscopic revolution. Trends in Ecology and Evolution 20:677684.Google Scholar
Erickson, G. M., and Tumanova, T. A. 2000. Growth curve of Psittacosaurus mongoliensis Osborn (Ceratopsia: Psittacosauridae) inferred from long bone histology. Zoological Journal of the Linnean Society 130:551566.Google Scholar
Erickson, G. M., Makovicky, P. J., Currie, P. J., Norell, M. A., Yerby, S. A., and Brochu, C. A. 2004. Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs. Nature 430:772775.CrossRefGoogle ScholarPubMed
Erickson, G. M., Curry Rogers, K., Varricchio, D. J., Norell, M. A., and Xu, X. 2007. Growth patterns in brooding dinosaurs reveal the timing of sexual maturity in non-avian dinosaurs and genesis of the avian condition. Biology Letters 3:558561.CrossRefGoogle ScholarPubMed
Erickson, G. M., Rauhut, O., Zhonghe, Z., Turner, A. H., Inouye, B. D., Hu, D., and Norell, M. A. 2009. Was dinosaurian physiology inherited by birds? Reconciling slow growth in Archaeopteryx. PLoS ONE 4 (10):e7390, 19.Google Scholar
Francillon-Vieillot, H., de Buffrénil, V., Castanet, J., Geraudie, J., Meunier, F. J., Sire, J. Y., Zylberberg, L., and de Ricqlès, A. 1990. Microstructure and mineralization of vertebrate skeletal tissues. Pp. 471548inCarter, J. E., ed. Skeletal biomineralization: patterns, processes and evolutionary trends. Van Nostrand Reinhold, New York.Google Scholar
Galton, P. M. 1982. Juveniles of the stegosaurian dinosaur Kentrosaurus from the Upper Jurassic of Tanzania, East Africa. Journal of Vertebrate Paleontology 2:4762.Google Scholar
Gibson, C. W. D., and Hamilton, J. 1984. Population processes in a large herbivorous reptile: the giant tortoise of Aldabra atoll. Oecologia 61:230240.Google Scholar
Goodwin, M. B., and Horner, J. R. 2004. Cranial histology of pachycephalosaurs (Ornithischia: Marginocephalia) reveals transitory structures inconsistent with head-butting behavior. Paleobiology 30:253267.Google Scholar
Grant, B. W., and Dunham, A. E. 1990. Elevational covariation in environmental constraints and life histories of the desert lizard Sceloporus merriami. Ecology 71:17651776.CrossRefGoogle Scholar
Hatvani, I. G., Kovács, J., Székely, I., Kovácsné Jakusch, P., and Korponai, J. 2011. Analysis of long term water quality changes in the Kis-Balaton Water Protection System with time series, cluster analysis and Wilks' lambda distribution. Ecological Engineering 37:629635.Google Scholar
Horner, J. R., and Goodwin, M. B. 2009. Extreme cranial ontogeny in the Upper Cretaceous dinosaur Pachycephalosaurus. PLoS ONE 4 (10):e7626, 111.Google Scholar
Horner, J. R., and Padian, K. 2004. Age and growth dynamics of Tyrannosaurus rex. Proceedings of the Royal Society of London B 27:18751880.CrossRefGoogle Scholar
Horner, J. R., de Ricqlès, A. J., and Padian, K. 2000. The bone histology of the hadrosaurid dinosaur Maiasaura peeblesorum: growth dynamics and physiology based on an ontogenetic series of skeletal elements. Journal of Vertebrate Paleontology 20:109123.Google Scholar
Horner, J. R., de Ricqlès, A. J., Padian, K., and Scheetz, R. D. 2009. Comparative long bone histology and growth of the “hypsilophodontid” dinosaurs Orodromeus makelai, Dryosaurus altus, and Tenontosaurus tillettii (Ornithischia: Euornithopoda). Journal of Vertebrate Paleontology 29:734747.Google Scholar
Hothorn, T., Hornik, K., van de Wiel, M. A., and Zeileis, A. 2008. Implementing a class of permutation tests: the coin package. Journal of Statistical Software 28:123.Google Scholar
Hübner, T. R. 2012. Bone histology in Dysalotosaurus lettowvorbecki (Ornithischia, Iguanodontia)—variation, growth, and implications. PLoS ONE 7 (1):e29958, 129.Google Scholar
Johnson, R. 1977. Size independent criteria for estimating relative age and relationships among growth parameters in a group of fossil reptiles (Reptilia: Ichthyosauria). Canadian Journal of Earth Sciences 14:19161924.Google Scholar
Kellner, A. W. A., and Tomida, Y. 2000. Description of a new species of Anhangueridae (Pterodactyloidea) with comments on the pterosaur fauna from the Santana Formation (Aptian–Albian), northeastern Brazil. National Science Museum Monographs 17. National Science Museum, Tokyo.Google Scholar
Klein, N. 2010. Long bone histology of Sauropterygia from the Lower Muschelkalk of the Germanic Basin provides unexpected implications for phylogeny. PLoS ONE 5 (7):e11613, 125.CrossRefGoogle ScholarPubMed
Klein, N., and Sander, P. M. 2008. Ontogenetic stages in the long bone histology of sauropod dinosaurs. Paleobiology 34:247263.Google Scholar
Knauer, J., and Siegl-Farkas, Á. 1992. A bakonyi felső-kréta bauxitformációk szenon fedőképződményeinek palynosztratigráfiai helyzete (Palynostratigraphic position of the Senonian beds overlying the Upper Cretaceous bauxite formations of the Bakony Mountains). Annual Report of the Hungarian Geological Institute 1990:463471. [In Hungarian.]Google Scholar
Knoll, F., Padian, K., and de Ricqlès, A. 2010. Ontogenetic change and adult body size of the early ornithischian dinosaur Lesothosaurus diagnosticus: implications for basal ornithischian taxonomy. Gondwana Research 17:171179.Google Scholar
Kovács, J., Tanos, P., Korponai, J., Kovácsné Székely, I., Gondár, K., Gondár-Sőregi, K., and Hatvani, I. G. 2012. Analysis of water quality data for scientists. Pp. 6594inVoudouris, K. and Voutsa, D., eds. Water quality monitoring and assessment Rijeka. InTech Open Access Publisher. doi: 10.5772/32173. URL: http://www.intechopen.com/books/water-quality-monitoring-and-assessment/analysis-of-water-quality-data-for-researchers.Google Scholar
Kruskal, J. B., and Wish, M. 1978. Multidimensional scaling. Sage University Paper Series on Quantitative Applications in the Social Sciences No. 07–011. Sage Publications, Newbury Park, CA.Google Scholar
Madsen, T., and Shine, R. 1993. Phenotypic plasticity in body sizes and sexual dimorphism in European grass snakes. Evolution 47:321325.Google Scholar
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., and Hornik, K. 2013. cluster: cluster analysis basics and extensions. R package, version 1.14.4.Google Scholar
Martill, D. M. 2007. The age of the Cretaceous Santana Formation fossil Konservat Lagerstätte of north-east Brazil: a historical review and an appraisal of the biochronostratigraphic utility of its palaeobiota. Cretaceous Research 28:895920.Google Scholar
Meyer, A. 1987. Phenotypic plasticity and heterochrony in Cichlasoma managuense (Pisces, Cichlidae) and their implications for speciation in cichlid fishes. Evolution 41:13571369.Google Scholar
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., and Wagner, H. 2008. The ‘vegan' package. http://cran.r-project.org, http://vegan.r-forge.r-project.org/.Google Scholar
Ősi, A., Weishampel, D. B., and Jianu, C. M. 2005. First evidence of azhdarchid pterosaurs from the Late Cretaceous of Hungary. Acta Palaeontologica Polonica 50:777787.Google Scholar
Ősi, A., Buffetaut, E., and Prondvai, E. 2011. New pterosaurian remains from the Late Cretaceous (Santonian) of Hungary (Iharkút, Csehbánya Formation). Cretaceous Research 32:456463.Google Scholar
Ősi, A., Rabi, M., Makádi, L., Szentesi, Z., Botfalvai, G., and Gulyás, P. 2012. The Late Cretaceous continental vertebrate fauna from Iharkút (Western Hungary): a review. Pp. 533569inGodefroit, P., ed. Bernissart dinosaurs and Early Cretaceous terrestrial ecosystems. Indiana University Press, Bloomington.Google Scholar
Padian, K. 2013. Why study the bone microstructure of fossil tetrapods? Pp. 111inPadian, K. and Lamm, E.-T., eds. Bone histology of fossil tetrapods: advancing methods, analysis, and interpretation. University of California Press, Los Angeles.Google Scholar
Padian, K., Horner, J. R., and de Ricqlès, A. 2004. Growth in small dinosaurs and pterosaurs: the evolution of archosaurian growth strategies. Journal of Vertebrate Paleontology 24:555571.Google Scholar
Padian, K., Lamm, E-T., and Werning, S. 2013. Selection of specimens. Pp. 3554inPadian, K. and Lamm, E.-T., eds. Bone histology of fossil tetrapods: advancing methods, analysis, and interpretation. University of California Press, Los Angeles.Google Scholar
Piersma, T., and Drent, J. 2003. Phenotypic flexibility and the evolution of organismal design. Trends in Ecology and Evolution 18:228233.Google Scholar
Prondvai, E., Stein, K., Ősi, A., and Sander, P. M. 2012. Life history of Rhamphorhynchus inferred from bone histology and the diversity of pterosaurian growth strategies. PLoS ONE 7 (2):e31392, 118.Google Scholar
Queral-Regil, A., and King, R. B. 1998. Evidence for phenotypic plasticity in snake body size and relative head dimensions in response to amount and size of prey. Copeia 1998:423429.Google Scholar
R Development Core Team. 2008. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org.Google Scholar
Ripley, B., Venables, B., Hornik, K., Gebhardt, A., and Firth, D. 2013. Package ‘MASS.' http://www.stats.ox.ac.uk/pub/MASS4/.Google Scholar
Sander, P. M. 2000. Long bone histology of the Tendaguru sauropods: implications for growth and biology. Paleobiology 26:466488.Google Scholar
Sander, P. M., and Klein, N. 2005. Developmental plasticity in the life history of a prosauropod dinosaur. Science 310:18001802.Google Scholar
Sander, P. M., Mateus, O., Laven, T., and Knötschke, N. 2006. Bone histology indicates insular dwarfism in a new Late Jurassic sauropod dinosaur. Nature 441:739741.Google Scholar
Scannella, J. B., and Horner, J. R. 2010. Torosaurus Marsh, 1891, is Triceratops Marsh, 1889 (Ceratopsidae: Chasmosaurinae): synonymy through ontogeny. Journal of Vertebrate Paleontology 30:11571168.Google Scholar
Schalk, G., Forbes, M. R., Weatherhead, P. J., and Montgomery, W. L. 2002. Developmental plasticity and growth rates of green frog (Rana clamitans) embryos and tadpoles in relation to a leech (Macrobdella decora) predator. Copeia 2002:445449.Google Scholar
Scheyer, T. M., Klein, N., and Sander, P. M. 2010. Developmental palaeontology of Reptilia as revealed by histological studies. Seminars in Cell and Developmental Biology 21:462470.Google Scholar
Shelton, C. D., Sander, P. M., Stein, K. H. W., and Winkelhorst, H. 2013. Long bone histology indicates sympatric species of Dimetrodon (Lower Permian, Sphenacodontidae). Earth and Environmental Science Transactions of the Royal Society of Edinburgh 103:217236.Google Scholar
Spencer, R. J., Janzen, F. J., and Thompson, M. B. 2006. Counterintuitive density-dependent growth in a long-lived vertebrate after removal of nest predators. Ecology 87:31093118.Google Scholar
Starck, M. J., and Chinsamy, A. 2002. Bone microstructure and developmental plasticity in birds and other dinosaurs. Journal of Morphology 254:232246.CrossRefGoogle ScholarPubMed
Starck, M. J., and Ricklefs, R. M. 1998. Avian growth and development: evolution within the altricial-precocial spectrum. Oxford University Press, Oxford.Google Scholar
Steel, L. 2008. The palaeohistology of pterosaur bone: an overview. InHone, D. W. E. and Buffetaut, E., eds. Flugsaurier: Pterosaur papers in honour of Peter Wellnhofer. Zitteliana B 28:109125.Google Scholar
Stein, K., and Prondvai, E. 2013. Rethinking the nature of fibrolamellar bone: an integrative biological revision of sauropod plexiform bone formation. Biological Reviews 89:2437.Google Scholar
Stein, K., and Sander, M. 2009. Histological core drilling: a less destructive method for studying bone histology. Pp. 6880inBrown, M. A., Kane, J. F., and Parker, W. G., eds. Methods in fossil preparation. Proceedings of the first annual fossil preparation and collections symposium. Petrified Forest National Park, Holbrook, AZ.Google Scholar
Stein, K., Csiki, Z., Curry Rogers, K., Weishampel, D. B., Redelstorff, R., Carballido, J. L., and Sander, P. M. 2010. Small body size and extreme cortical bone remodeling indicate phyletic dwarfism in Magyarosaurus dacus (Sauropoda: Titanosauria). Proceedings of the National Academy of Sciences USA 107:92589263.Google Scholar
Tuba, Gy., Kiss, P., Pósfai, M., and Mindszenty, A. 2006. Diagenezis-történeti vizsgálatok a bakonyi felső-kréta dinoszaurusz lelőhely csontanyagán (Investigation of diagenetic processes on the bone material of the Late Cretaceous dinosaur site in the Bakony Mountains). Földtani Közlöny 136:124. [In Hungarian.]Google Scholar
Unwin, D. M., and Bakhurina, N. N. 2000. Pterosaurs from Russia, Middle Asia and Mongolia. Pp. 420433inBenton, M. J., Shishkin, M. A., Unwin, D. M., and Kurochkin, E. N., eds. The age of dinosaurs in Russia and Mongolia. Cambridge University Press, Cambridge.Google Scholar
Varricchio, D. J. 1993. Bone microstructure of the Upper Cretaceous theropod dinosaur Troodon formosus. Journal of Vertebrate Paleontology 13:99104.Google Scholar
Wang, X., Kellner, A. W. A., Zhou, Z., and Campos, D. A. 2005. Pterosaur diversity and faunal turnover in Cretaceous terrestrial ecosystems in China. Nature 437:875879.Google Scholar
Wellnhofer, P. 1991. The illustrated encyclopedia of pterosaurs. Salamander Books, London.Google Scholar
Wells, N. A. 1989. Making thin sections. Pp. 120129inFeldmann, R. M., Chapman, R. E., and Hannibal, J. T., eds. Paleotechniques. University of Tennessee, Knoxville.Google Scholar
Wikelski, M., and Thom, C. 2000. Marine iguanas shrink to survive El Niño. Nature 403:37.Google Scholar
Witton, M. P., and Habib, M. B. 2010. On the size and flight diversity of giant pterosaurs, the use of birds as pterosaur analogues and comments on pterosaur flightlessness. PLoS ONE 5 (11):e13982, 118.Google Scholar
Woodward, H. N., Horner, J. R., and Farlow, J. O. 2011. Osteohistological evidence for determinate growth in the American Alligator. Journal of Herpetology 45:339342.Google Scholar
Woodward, H. N., Rich, T. H., Chinsamy, A., and Vickers-Rich, P. 2011. Growth dynamics of Australia's polar dinosaurs. PLoS ONE 6 (8):e23339, 15.Google Scholar