Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T18:59:02.075Z Has data issue: false hasContentIssue false

Discerning the diets of sweep-feeding eurypterids: assessing the importance of prey size to survivorship across the Late Devonian mass extinction in a phylogenetic context

Published online by Cambridge University Press:  22 May 2020

Emily S. Hughes
Affiliation:
Department of Geology and Geography, West Virginia University, 98 Beechurst Avenue, Morgantown, West Virginia26506, U.S.A. E-mail: [email protected], [email protected]
James C. Lamsdell
Affiliation:
Department of Geology and Geography, West Virginia University, 98 Beechurst Avenue, Morgantown, West Virginia26506, U.S.A. E-mail: [email protected], [email protected]

Abstract

Eurypterids are generally considered to comprise a mixture of active nektonic to nektobenthic predators and benthic scavenger-predators exhibiting a mode of life similar to modern horseshoe crabs. However, two groups of benthic stylonurine eurypterids, the Stylonuroidea and Mycteropoidea, independently evolved modifications to the armature of their anterior appendages that have been considered adaptations toward a sweep-feeding life habit, and it has been suggested the evolution toward sweep-feeding may have permitted stylonurines to capture smaller prey species and may have been critical for the survival of mycteropoids during the Late Devonian mass extinction. There is a linear correlation between the average spacing of feeding structures and prey sizes among extant suspension feeders. Here, we extrapolate this relationship to sweep-feeding eurypterids in order to estimate the range of prey sizes that they could capture and examine prey size in a phylogenetic context to determine what role prey size played in determining survivorship during the Late Devonian. The mycteropoid Cyrtoctenus was the most specialized sweep-feeder, with comblike appendage armature capable of capturing mesoplankton out of suspension, while the majority of stylonurines possess armature corresponding to a prey size range of 1.6–52 mm, suggesting they were suited for capturing small benthic macroinvertebrates such as crustaceans, mollusks, and wormlike organisms. There is no clear phylogenetic signal to prey size distribution and no evolutionary trend toward decreasing prey sizes among Stylonurina. Rather than prey size, species survivorship during the Late Devonian was likely mediated by geographic distribution and ability to capitalize on the expanding freshwater benthos.

Type
Articles
Copyright
Copyright © 2020 The Paleontological Society. All rights reserved

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abe, F. R., and Lieberman, B. S.. 2009. The nature of evolving radiations: a case study involving Devonian trilobites. Evolutionary Biology 36:225234.CrossRefGoogle Scholar
Anderson, R. P., McCoy, V. E., McNamara, M. E., and Briggs, D. E. G.. 2014. What big eyes you have: the ecological role of giant pterygotid eurypterids. Biology Letters 10:20140412.Google ScholarPubMed
Anger, K. 1991. Effects of temperature and salinity on the larval development of the Chinese mitten crab Eriocheir sinensis (Decapoda: Grapsidae). Marine Ecology Progress Series 72:103110.Google Scholar
Bennett, C. E., Siveter, D. J., Davies, S. J., Williams, M., Wilkinson, I. P., Browne, M., and Miller, C. G.. 2012. Ostracods from freshwater and brackish environments of the Carboniferous of the Midland Valley of Scotland: the early colonization of terrestrial water bodies. Geological Magazine 149:366396.Google Scholar
Benton, M. J., and Storrs, G. W.. 1994. Testing the quality of the fossil record: paleontological knowledge is improving. Geology 22:111114.10.1130/0091-7613(1994)022<0111:TTQOTF>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Botton, M. L. 1984. Diet and food preferences of the adult horseshoe crab Limulus polyphemus in Delaware Bay, New Jersey, USA. Marine Biology 81:199207.CrossRefGoogle Scholar
Botton, M. L., and Haskin, H. H.. 1984. Distribution and feeding of the horseshoe crab, Limulus polyphemus, on the continental shelf off New Jersey. Fishery Bulletin 82:383389.Google Scholar
Botton, M. L., and Ropes, J. W.. 1989. Feeding ecology of horseshoe crabs on the continental shelf, New Jersey to North Carolina. Bulletin of Marine Science 45:637647.Google Scholar
Boyd, C. M., Heyraud, M., and Boyd, C. N.. 1984. The biology of the Antarctic krill Euphausia superba. Journal of Crustacean Biology 4:123141.10.1163/1937240X84X00543CrossRefGoogle Scholar
Braddy, S. J. 2001. Eurypterid palaeoecology: palaeobiological, ichnological and comparative evidence for a “mass-moult-mate” hypothesis. Palaeogeography, Palaeoclimatology, Palaeoecology 172:115132.10.1016/S0031-0182(01)00274-7CrossRefGoogle Scholar
Buatois, L. A., and Mangano, G. M.. 1993. Ecospace utilization, paleoenvironmental trends, and the evolution of early nonmarine biotas. Geology 21:595598.Google Scholar
Buatois, L. A., Mangano, G. M., Genise, J. F., and Taylor, T. N.. 1998. The ichnologic record of the continental invertebrate invasion: evolutionary trends in environmental expansion, ecospace utilization, and behavioral complexity. Palaios 13:217240.Google Scholar
Budy, P., and Haddix, T.. 2005. Zooplankton size relative to gill raker spacing in rainbow trout. Transactions of the American Fisheries Society 134:12281235.Google Scholar
Chatterji, A., Mishra, J. K., and Parulekar, A. H.. 1992. Feeding behavior and food selection in the horseshoe crab, Tachypleus gigas (Müller). Hydrobiologia 246:4148.CrossRefGoogle Scholar
Clarke, J. M., and Ruedemann, R.. 1912. The Eurypterida of New York. New York State Museum Memoir 14:1439.Google Scholar
Clarkson, E.N.K., Milner, A.R., and Coates, A.I.. 1994. Paleoecology of the Viséan of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh (Earth Sciences) 84:417425.Google Scholar
Clarkson, E. N. K., Harper, D.A.T., Taylor, C. M., and Anderson, L. I., eds. 2009. Silurian Fossils of the Pentland Hills, Scotland. Palaeontological Association, London.Google Scholar
Congreve, C. R., Falk, A. R., and Lamsdell, J. C.. 2018. Biological hierarchies and the nature of extinction. Biological Reviews 93:811826.Google ScholarPubMed
Dunlop, J. A., Penney, D., and Jekel, D.. 2019. A summary list of fossil spiders and their relatives. In World spider catalog, Version 20.0. Natural History Museum, Bern. http://wsc.nmbe.ch, accessed 15 March 2019.Google Scholar
Evans, F. J. 1999. Palaeobiology of Early Carboniferous lacustrine biota of the Waaipoort Formation (Witteberg Group), South Africa. Palaeontologia Africana 35:16.Google Scholar
Gauthier, J., Kluge, A. G., and Rowe, T.. 1988. Amniote phylogeny and the importance of fossils. Cladistics 4:105209.Google Scholar
Jablonski, D. 2008. Extinction and the spatial dynamics of biodiversity. Proceedings of the National Academy of Sciences USA 105:11528–1535.Google ScholarPubMed
Jenkin, P. M. 1957. The filter-feeding and food of flamingoes (Phoenicopteri). Philosophical Transactions of the Royal Society of London 204:401493.Google Scholar
Jones, W. T., Feldmann, R. M., Hannibal, J. T., Schweitzer, C. E., Garland, M. C., Maguire, E. P., and Tashman, J. N.. 2018. Morphology and paleoecology of the oldest lobster-like decapod, Palaeopalaemon newberryi Whitfield, 1880 (Decapoda: Malacostraca). Journal of Crustacean Biology 38:302314.CrossRefGoogle Scholar
King, O. A., Miller, R. F., and Stimson, M. R.. 2017. Ichnology of the Devonian (Emsian) Campbellton Formation, New Brunswick, Canada. Atlantic Geology 53:115.Google Scholar
Lamsdell, J. C. 2011. The eurypterid Stoermeropterus conicus from the lower Silurian Pentland Hills, Scotland. Monograph of the Palaeontolographical Society, London 165:1–84, plates 1–15.Google Scholar
Lamsdell, J. C. 2013. Redescription of Drepanopterus pentlandicus Laurie, 1892, the earliest known mycteropoid (Chelicerata: Eurypterida) from the early Silurian (Llandovery) of the Pentland Hills, Scotland. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 103:77103.Google Scholar
Lamsdell, J. C. 2016. Horseshoe crab phylogeny and independent colorizations of freshwater: ecological invasion as a driver for morphological innovation. Palaeontology 59:181194.Google Scholar
Lamsdell, J. C., and Braddy, S. J.. 2010. Cope's Rule and Romer's theory: patterns of diversity and gigantism in eurypterids and Paleozoic vertebrates. Biology Letters 6:265269.Google Scholar
Lamsdell, J. C., and Briggs, D. E. G.. 2017. The first diploaspidid (Chelicerata: Chasmataspidida) from North America (Silurian, Bertie Group, New York State) is the oldest species of Diploaspis. Geological Magazine 154:175–80.Google Scholar
Lamsdell, J. C., and Selden, P. A.. 2017. From success to persistence: Identifying an evolutionary regime shift in the diverse Paleozoic aquatic arthropod group Eurypterida, driven by the Devonian biotic crisis. Evolution 75:95110.Google Scholar
Lamsdell, J. C., Braddy, S. J., and Tetlie, O. E.. 2009. Redescription of Drepanopterus abonensis (Chelicerata: Eurypterida: Stylonurina) from the Late Devonian of Portishead, UK. Paleontology 52:11131139.CrossRefGoogle Scholar
Lamsdell, J. C., Braddy, S. J., and Tetlie, O. E.. 2010. The systematics and phylogeny of the Stylonurina (Arthropoda: Chelicerata: Eurypterida). Journal of Systematic Paleontology 8:4961.Google Scholar
Lamsdell, J. C, Briggs, D. E. G., Liu, H. P., Witzke, B. J., McKay, R. M.. 2015. The oldest described eurypterid: a giant Middle Ordovician (Darriwilian) megalograptid from the Winneshiek Lagerstätte of Iowa. BMC Evolutionary Biology 15(169):131.CrossRefGoogle ScholarPubMed
Lamsdell, J. C., Congreve, C. R., Hopkins, M. J., Krug, A. Z., and Patzkowsky, M. E.. 2017. Phylogenetic paleoecology: tree-thinking and ecology in deep time. Trends in Ecology and Evolution 32:452463.Google ScholarPubMed
Lerosey-Aubril, R., and Pates, S.. 2018. New suspension-feeding radiodont suggests evolution of microplanktivory in Cambrian macronekton. Nature Communications 9:ar3774.Google ScholarPubMed
Lomax, D. R., Lamsdell, J. C., and Ciurca, S. J. Jr. 2011. A collection of eurypterids from the Silurian of Lesmahagow collected pre 1900. Geological Curator 9:331342.Google Scholar
Longshaw, M., and Stebbing, P.. 2016. Biology and ecology of crayfish. Taylor and Francis, Boca Raton, Florida.Google Scholar
McCoy, V. E., Lamsdell, J. C., Poschmann, M., Anderson, R. P., and Briggs, D. E. G.. 2015. All the better to see you with: eyes and claws reveal the evolution of divergent ecological roles in giant pterygotid eutypetids. Biology Letters 11:20150564.CrossRefGoogle Scholar
Moran, P. A. P. 1950. Notes on continuous stochastic phenomena. Biometrika 37: 1723.10.1093/biomet/37.1-2.17CrossRefGoogle ScholarPubMed
Payne, J. L., and Finnegan, S.. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.CrossRefGoogle ScholarPubMed
Plax, D. P., Lamsdell, J. C., Vrazo, M. B., and Barbikov, D. V.. 2018. A new genus of eurypterid (Chelicerata, Eurypterida) from the Upper Devonian salt deposits of Belarus. Journal of Paleontology 92:838849.10.1017/jpa.2018.11CrossRefGoogle Scholar
Ponomarenko, A. G. 1985. King crabs and eurypterids from the Permian and Mesozoic of the USSR. Paleontological Journal 3:100104.Google Scholar
Poschmann, M., Schoenemann, B., and McCoy, V. E.. 2016. Telltale eyes: the lateral visual systems of Rhenish Lower Devonian eurypterids (Arthropoda, Chelicerata) and their palaeobiological implications. Palaeontology 59:295304.CrossRefGoogle Scholar
R Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org.Google Scholar
Rohatgi, A. 2018. WebPlotDigitizer: A computer application for extracting data from published scatter plots, Version 4.1. Austin, Tex. https://automeris.io/WebPlotDigitizer, accessed 15 October 2019.Google Scholar
Rolfe, W. D. I., and Dzik, J.. 2006. Angustidontus, a Late Devonian pelagic predatory crustacean. Transactions of the Royal Society of Edinburgh (Earth Sciences) 97:7596.Google Scholar
Romer, A. S. 1933. Eurypterid influence on vertebrate history. Science 78:114117.Google ScholarPubMed
Selden, P. A. 1981. Functional morphology of the prosoma of Baltoeurypterus tetragonophthalmus (Fischer) (Chelicerata: Eurypterida). Transactions of the Royal Society of Edinburgh (Earth Sciences) 72: 948.Google Scholar
Selden, P. A., Corronca, J. A., and Hünicken, M. A.. 2005. The true identity of the supposed giant fossil spider Megarachne. Biology Letters 1:4448.Google ScholarPubMed
Spearman, C. 1904. The proof and measurement of association between two things. American Journal of Psychology 15:72101.10.2307/1412159CrossRefGoogle Scholar
Stigall, A. L. 2010. Invasive species and biodiversity crises: testing the link in the Late Devonian. PLoS ONE 5:17.Google ScholarPubMed
Stigall, A. L. 2012. Speciation collapse and invasive species dynamics during the Late Devonian “Mass Extinction.” GSA Today 22:49.10.1130/G128A.1CrossRefGoogle Scholar
Størmer, L. S. 1934. Merostomata from the Downtonian Sandstone of Ringerike, Norway., No. 10. I Kommisjon hos Jacob Dybwad, Oslo,Google Scholar
Størmer, L. S. 1936. Eurypteriden aus dem rheinischen Unterdevon. Im vertrieb bei der Preussischen Geologischen Landesanstalt, Berlin.Google Scholar
Størmer, L. S. 1951. A new eurypterid from the Ordovician of Montgomeryshire, Wales. Geological Magazine 88:409422.10.1017/S001675680006996XCrossRefGoogle Scholar
Størmer, L. S., and Waterston, C. D.. 1968. Cyrtoctenus gen. nov., a large late Paleozoic arthropod with pectinate appendages. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 68:63109.Google Scholar
Tanaka, H., Aoki, I., and Ohshimo, S.. 2006. Feeding habits and gill raker morphology of three planktivorous pelagic fish species off the coast of northern and western Kyushu in summer. Journal of Fish Biology 68:10411061.Google Scholar
Tetlie, O. E. 2007. Distribution and dispersal history of Eurypterida (Chelicerata). Palaeogeography, Palaeoclimatology, Palaeoecology 252:557574.Google Scholar
Tetlie, O. E. 2008. Hallipterus excelsior, a stylonurid (Chelicerata: Eurypterida) from the Late Devonian Catskill Delta complex, and its phylogenetic position in the Hardieopteridae. Bulletin of the Peabody Museum of Natural History 49:1930.Google Scholar
Tollerton, V. P. 1989. Morphology, taxonomy, and classification of the order Eurypterida Burmeister, 1843. Journal of Paleontology 63:642657.CrossRefGoogle Scholar
Tshudy, D., and Sorhannus, U.. 2000. Pectinate claws in decapod crustaceans: convergence in four lineages. Journal of Paleontology 74:474486.Google Scholar
Vinther, J., Stein, M., Lungrich, N. R., and Harper, D. A. T.. 2014. A suspension-feeding anomalocarid from the early Cambrian. Nature 507:496499.Google ScholarPubMed
Waterston, C. D. 1957. The Scottish Carboniferous Eurypterida. Transactions of the Royal Society of Edinburgh (Earth Sciences) 63:265288.Google Scholar
Waterston, C. D. 1962. Pagea sturrocki gen. et sp. nov., a new eurypterid from the Old Red Sandstone of Scotland. Palaeontology 5:137148.Google Scholar
Waterston, C. D. 1979. Problems of functional morphology and classification in stylonuroid eurypterids (Chelicerata, Merostomata), with observations on the Scottish Silurian Stylonuroidea. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 70:251322.Google Scholar
Waterston, C. D., Oelofsen, B. W., and Oosthuizen, R. D. F.. 1985. Cyrtoctenus wittebergensis sp. nov. (Chelicerata: Eurypterida), a large sweep-feeder from the Carboniferous of South Africa. Transactions of the Royal Society of Edinburgh (Earth Sciences) 76:339358.Google Scholar