Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T05:26:09.549Z Has data issue: false hasContentIssue false

Differential drivers of benthic foraminiferal and molluscan community composition from a multivariate record of early Miocene environmental change

Published online by Cambridge University Press:  08 April 2016

Christina L. Belanger
Affiliation:
Department of Geology and Geological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, U.S.A. E-mail: [email protected]
Marites Villarosa Garcia
Affiliation:
Department of Geophysical Sciences, University of Chicago, Chicago, Illinois 60637, U.S.A. E-mail: [email protected]

Abstract

Climate changes are multivariate in nature, and disentangling the proximal drivers of biotic responses to paleoclimate events requires time series of multiple environmental proxies. We reconstruct a multivariate time series of local environmental change for the early Miocene Newport Member of the Astoria Formation (20.26–18 Ma), using proxies for temperature (δ18O), productivity (δ13C), organic carbon flux (Δδ13C), oxygenation (δ15N), and sedimentary grain size (% mud). Our data suggest increases in productivity and declines in oxygenation on the Oregon shelf during this interval of global warming. We evaluate the association of individual environmental factors, and combinations of factors, with changes in faunal composition observed in benthic foraminiferal and molluscan communities collected from the exact same sediments as the environmental data. The δ15N values are the most parsimonious correlates with major changes in foraminiferal composition, whereas molluscan composition is most closely related to δ13C values, suggesting that different components of the environment are influencing each group. When the proxies that have the best supported relationships with the faunal gradients are removed from the analyses to simulate the absence of those proxy data, significant relationships between the faunal gradients and the remaining environmental proxies can still be found. This suggests that environmental drivers can be incorrectly attributed to faunal changes when key proxy data are missing. Paleoecological studies of biotic response that test multiple environmental drivers for multiple taxonomic groups are powerful tools for identifying the ecological consequences of past warming events and the regional drivers of ecological changes.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Addicott, W. O. 1970. Latitudinal gradients in Tertiary molluscan faunas of the Pacific coast. Palaeogeography, Palaeoclimatology, Palaeoecology 8:287312.Google Scholar
AlgeoT., H. T., H.Rowe, J.Tower, C., Schwark, L., Herrmann, A., and Heckle, P. 2008. Changes in ocean denitrification during Late Carboniferous glacial-interglacial cycles. Nature Geoscience, 1:709714.Google Scholar
Allmon, W. D. 2001. Nutrients, temperature, disturbance, and evolution: a model for the late Cenozoic marine record of the western Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology 166:926.CrossRefGoogle Scholar
Altabet, M. A., Francois, R., Murray, D. W., and Prell, W. L. 1995. Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature 373:506509.Google Scholar
Amano, K. 1994. An attempt to estimate the surface temperature of the Japan Sea in the Early Pleistocene by using a molluscan assemblage. Palaeogeography, Palaeoclimatology, Palaeoecology 108:369378.Google Scholar
Anderson, D. R., Burnham, K. P., and Thompson, W. L. 2000. Null hypothesis testing: problems, prevalence, and an alternative. Journal of Wildlife Management 64:912923.Google Scholar
Ashckenazi-Polivoda, S., Edelman-Furstenberg, Y., Almogi-Labin, A., and Benjamini, C. 2010. Characterization of lowest oxygen environments within ancient upwelling environments: benthic foraminifera assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 289:134144.Google Scholar
Belanger, C. L. 2011a. Continental shelf dysoxia accompanies Early Miocene warming based on benthic foraminifera and sediments from Oregon. Marine Micropaleontology 80:101113.Google Scholar
Belanger, C. L. 2011b. Evaluating taphonomic bias of paleoecological data in fossil benthic foraminiferal assemblages. Palaios 26:767778.Google Scholar
Belanger, C. L. 2012. Individual to community-level faunal responses to environmental change from a marine fossil record of Early Miocene global warming. PLoS One 7:e36290. doi: 10.1371/journal.pone.0036290.Google Scholar
Berger, W. H., and Wefer, G. 1990. Export production: seasonality and intermittency, and paleoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 89:245254.Google Scholar
Bottjer, D. J., Campbell, K. A., Schubert, J. K., and Droser, M. J. 1995. Palaeoecological models, non-uniformitarianism, and tracking the changing ecology of the past. InBosence, D. W. J. and Allison, P. A., eds. Marine palaeoenvironmental analysis from fossils. Geological Society of London Special Publication 83:726.Google Scholar
Bowerman, B. L., and O'Connell, R. T. 1990. Linear statistical models: an applied approach. PWS-Kent, Boston.Google Scholar
Braiser, M. D. 1995. Fossil indicators of nutrient levels. 1. Eutrophication and climate change. InBosence, D. W. J. and Allison, P. A., eds. Marine palaeoenvironmental analysis from fossils. Geological Society of London Special Publication 83:113132.Google Scholar
Brandes, J. A., and Devol, A. H. 2002. A global marine-fixed nitrogen isotopic budget: Implications for Holocene nitrogen cycling. Global Biogeochemical Cycles 16:1120. doi: 10.1029/2001GB001856.Google Scholar
Bruckner, S., and Mackensen, A. 2008. Organic matter rain rates, oxygen availability, and vital effects from benthic foraminiferal δ13C in the historic Skagerrak, North Sea. Marine Micropaleontology 66:192207.Google Scholar
Bush, A. M., and Brame, R. I. 2010. Multiple paleoecological controls on the composition of marine fossil assemblages from the Frasnian (Late Devonian) of Virginia, with a comparison of ordination methods. Paleobiology 36:573591.Google Scholar
Cushman, J. A. 1940. Foraminifera: their classification and economic use. Harvard University Press, Cambridge.Google Scholar
Cushman, J. A., Roscoe, E., and Stewart, K. C. 1948. Five papers on foraminifera from the Tertiary of Western Oregon. State of Oregon Department of Geology and Mineral Industries Bulletin 36:1110.Google Scholar
Dame, R. F. 1996. Ecology of marine bivalves: an ecosystem approach. CRC Press, Boca Raton, Fla.Google Scholar
Dumas, S., and Arnott, R. W. C. 2006. Origin of hummocky and swaley cross-stratification—the controlling influence of unidirectional current strength and aggradation rate. Geology 34:10731076.Google Scholar
Edelman-Furstenberg, Y. 2008. Macrobenthic community structure in a high-productivity region: Upper Campanian Mishash Formation. Palaeogeography, Palaeoclimatology, Palaeoecology 261:5877.CrossRefGoogle Scholar
Ellis, B. F., and Messina, A. R. 2006. Catalogue of Foraminifera. Micropaleontology Press, New York. http://www.micropress.org/em/. Accessed March 2013.Google Scholar
Fontanier, C., Jorissen, F. J., Michel, E., Cortijo, E., Vidal, L., and Anschutz, P. 2008. Stable oxygen and carbon isotopes of live (stained) benthic foraminifera from Cap-Ferret Canyon (Bay of Biscay). Journal of Foraminiferal Research 38:3951.CrossRefGoogle Scholar
Galbraith, E. D., Kienast, M., Pederson, T. F., and Calvert, S. E. 2004. Glacial-interglacial modulation of the marine nitrogen cycle by high-latitude O2 supply to the global thermocline. Paleoceanography 19:PA4007. doi: 10.1029/2003PA001000.Google Scholar
Galbraith, E. D., Sigman, D. M., Robinson, R. S., and Pederson, T. F. 2008. Nitrogen in past marine environments. Pp. 14971534inCapone, D. G., Bronk, D. A., Mulholland, M. R., and Carpenter, E. J., eds. Nitrogen in the marine environment. Academic Press, San Diego.Google Scholar
Ganeshram, R. S., Pederson, T. F., Calvert, S. E., and Francois, R. 2002. Reduced nitrogen fixation in the glacial ocean inferred from changes in marine nitrogen and phosphorous inventories. Nature 415:156159.Google Scholar
Gooday, A. J. 2003. Benthic foraminifera (Protista) as tools in deep-water palaeoceanography: environmental influences on faunal characteristics. Advances in Marine Biology 46:190.Google Scholar
Gooday, A. J., Jorissen, F., Levin, L. A., Middleburg, J. J., Naqvi, S. W. A., Rabalais, N. N., Scranton, M., and Zhang, J. 2009. Historical records of coastal eutrophication-induced hypoxia. Biogeosciences 6:17071745.Google Scholar
Grantham, B. A., Chan, F., Nielsen, K. J., Fox, D. S., Barth, J. A., Huyer, A., Lubchenco, J., and Menge, B. A. 2004. Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature 429:749754.Google Scholar
Hebbeln, D., Marchant, M., Freudenthal, T., and Wefer, G. 2000. Surface sediment distribution along the Chilean continental slope related to upwelling and productivity. Marine Geology 164:119137.Google Scholar
Heiberger, R. M., and Holland, B. 2004. Statistical analysis and data display: an intermediate course with examples in S-Plus, R, and SAS. Springer Texts in Statistics, New York.Google Scholar
Hill, M. O., and Gauch, H. G. Jr. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:4758.Google Scholar
Holland, S. M., and Patzkowsky, M. E. 2007. Gradient ecology of a biotic invasion: biofacies of the type Cincinnatian series (Upper Ordovician), Cincinnati, Ohio Region, USA. Palaios 22:392407.Google Scholar
Hsieh, C., and Ohman, M. D. 2006. Biological responses to environmental forcing: the linear tracking window hypothesis. Ecology 87:19321938.Google Scholar
Hunt, G. 2008. paleoTS: modeling evolution in paleontological time-series. R package, Version 0.3–1.Google Scholar
Jaccard, S. L., and Galbraith, E. D. 2012. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nature Geoscience 5:151156. doi: 10.1038/ngeo1352.Google Scholar
Jongman, R. H. G., Ter Braak, C. J. F., and Van Tongeren, O. F. R. 1995. Data analysis in community and landscape ecology. Cambridge University Press, Cambridge.Google Scholar
Jorissen, F. J., Fontanier, C., and Thomas, E. 2007. Paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics. InHillaire-Marcel, C. and de Vernal, A., eds. Proxies in Late Cenozoic paleoceanography. Developments in Marine Geology 1:263325.Google Scholar
Keen, A. M. 1937. An abridged check list and bibliography of western North American marine Mollusca. Stanford University Press, Stanford, Calif.Google Scholar
Kender, S., Kaminski, M. A., and Jones, R. W. 2009. Early to middle Miocene foraminifera from the deep-sea Congo Fan, offshore Angola. Micropaleontology 54:477568.Google Scholar
Kienast, M. 2000. Unchanged nitrogen isotopic composition of organic matter in the South China Sea during the last climatic cycle: global implications. Paleoceanography 15:244253.Google Scholar
Kienast, S. S., Calvert, S. E., and Pederson, T. F. 2002. Nitrogen isotope and paleoproductivity variations along the northeast Pacific margin over the last 120 kyr: surface and subsurface paleoceanography. Paleoceanography 17:1055. doi: 10.1029/2001PA000650.Google Scholar
Levin, L. A., Ekau, W., Gooday, A. J., Jorissen, F., Middelburg, J. J., Naqvi, S. W. A., Neira, C., Rabalais, N. N., and Zhang, J. 2009. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6:20632098.Google Scholar
Levinton, J. S. 1972. Stability and trophic structure in deposit-feeding and suspension-feeding communities. American Naturalist 106:472486.Google Scholar
Loeblich, A. R., and Tappan, H. 1987. Foraminifera genera and their classification. Van Nostrand Reinhold, New York.Google Scholar
Loubere, P. 1996. The surface ocean productivity and bottom water oxygen signals in deep water benthic foraminiferal assemblages. Marine Micropaleontology 28:247261.Google Scholar
Martin, R. E., Wehmiller, J. F., Harris, M. S., and Liddell, W. D. 1996. Comparative taphonomy of bivalves and foraminifera from Holocene tidal flat sediments, Bahia la Choya, Sonora, Mexico (Northern Gulf of California): taphonomic grades and temporal resolution. Paleobiology 22:8090.Google Scholar
McCorkle, D. C., Keigwin, L. D., Corliss, B. H., and Emerson, S. R. 1990. The influence of microhabitats on the carbon isotopic composition of deep-sea benthic foraminifera. Paleoceanography 5:161185.Google Scholar
McCorkle, D. C., Corliss, B. H., and Farnham, C. A. 1997. Vertical distributions and stable isotopic composition of live (stained) benthic foraminifera from the North Carolina and California continental margins. Deep-Sea Research I 44:9831024.Google Scholar
McCune, B., and Grace, J. B. 2002. Analysis of ecological communities. MJM Software Design, Gleneden Beach, Ore.Google Scholar
Middleburg, J. J., Soetaert, K., Herman, P. M. J., and Heip, C. H. R. 1996. Denitrification in marine sediments: a model study. Global Biogeochemical Cycles 10:661673.Google Scholar
Miller, A. I., Holland, S. M., Meyer, D. L., and Dattilo, B. E. 2001. The use of faunal gradient analysis for intraregional correlation and assessment of changes in sea-floor topography in the type Cincinnatian. Journal of Geology 109:603613.Google Scholar
Moore, E. J. 1963. Miocene marine mollusks from the Astoria Formation in Oregon. U.S. Geological Survey Professional Paper 419:1109.Google Scholar
Moore, E. J., and Moore, G. W. 2002. Miocene molluscan fossils and stratigraphy, Newport, Oregon. InMoore, G. W., ed. Field guide to geologic process in Cascadia. Oregon Department of Geology and Mineral Industries Special Paper 36:187200.Google Scholar
Murray, J. W. 1991. Ecology and paleoecology of benthic foraminifera. Longman Scientific and Technical, New York.Google Scholar
Murray, J. W.Ecology and applications of benthic foraminifera. Cambridge University Press, Cambridge.Google Scholar
Oksanen, J., Blanchet, G. F., Kindt, R., Legendre, P., O'Hara, R. B., Simpson, G. L., Solymos, P., Henry, M., Stevens, H., and Wagner, H. 2010. vegan: community ecology package. R package, Version 1.17–2.Google Scholar
Patzkowsky, M. E., and Holland, S. M. 2012. Stratigraphic paleobiology: understanding the distribution of fossil taxa in time and space. University of Chicago Press, Chicago.Google Scholar
Pearson, P. N., and Burgess, C. E. 2008. Foraminifer test preservation and diagenesis: comparison of high latitude Eocene sites. InAustin, W. E. N. and James, R. H., eds. Biogeochemical controls on palaeoceanographic environmental proxies. Geological Society of London Special Publication 303:5972.Google Scholar
Pearson, T. H., and Rosenberg, G. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology: an Annual Review 16:229311.Google Scholar
Pichevin, L., Martinez, P., Bertrand, P., Schneider, R., and Giraudeau, J. 2005. Nitrogen cycling on the Namibian shelf and slope over the last two climate cycles: local and global forcings. Paleoceanography 20:PA2006. doi: 10.1029/2004PA001001.Google Scholar
R Development Core Team, 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org.Google Scholar
Rabalais, N. N., Turner, R. E., and Wiseman, W. J. 2002. Gulf of Mexico hypoxia, a.k.a. “The Dead Zone.” Annual Review of Ecology and Systematics 33:235263.CrossRefGoogle Scholar
Rabalais, N. N., Turner, R. E., Diaz, R. J., and Justic, D. 2009. Global change and eutrophication of coastal waters. ICES Journal of Marine Science 66:15281537.Google Scholar
Robinson, R. S., Kienast, M., Albuquerque, A. L., Altabet, M. A., Contreras, S., De Pol-Holz, R., Dubois, N., Francois, R., Galbraith, E., Hsu, T. C., Ivanochko, T., Jaccard, S., Kao, S. J., Kiefer, T., Kienast, S., Lehmann, M. F., Martinez, P., McCarthy, M., Mobius, J., Pedersen, T., Quan, T.M., Ryabenko, E., Schmittner, A., Schneider, R., Schneider-Mor, A., Shigemitsu, M., Sinclair, D., Somes, C., Studer, A., Thunell, R., and Yang, J. Y. 2012. A review of nitrogen isotopic alteration in marine sediments. Paleoceanography 27:PA4203. doi: 10.1029/2012PA002321.Google Scholar
Savin, S. M., Abel, L., Barrera, E., Hodell, D., Kennett, J. P., Murphy, M., Keller, G., Killingley, J., and Vincent, E. 1985. The evolution of Miocene surface and near-surface marine temperatures: oxygen isotopic evidence. InKennett, J. P., ed. The Miocene ocean: paleoceanography and biogeography. Geological Society of America Memoir 163:4982.Google Scholar
Schmitz, B., Speijer, R. P., and Aubry, M. P. 1996. Latest Paleocene benthic extinction event on the southern Tethyan shelf (Egypt): foraminiferal stable isotopic (δ13C, δ18O) records. Geology 24:347350.Google Scholar
Sigman, D. M., and Casciotti, K. L. 2001. Nitrogen isotopes in the ocean. Pp. 18841894inSteele, J. H., Thorpe, S. A., and Turekian, K. K., eds. Encyclopedia of ocean sciences. Academic Press, New York.Google Scholar
Snavely, P. D., Rau, W. W., and Wagner, H. C. 1964. Miocene stratigraphy of the Yaquina Bay area, Newport, Oregon. Ore Bin 26:133150.Google Scholar
Struck, U. 2012. On the use of stable nitrogen isotopes in present and past anoxic environments. InAltenbach, A. V., Bernhard, J. M., and Seckbach, J., eds. Anoxia: evidence for eukaryote survival and paleontological strategies. Cellular Origin, Life in Extreme Habitats and Astrobiology 21:497513.Google Scholar
Ter Braak, C. J. F., and Prentice, I. C. 1988. A theory of gradient analysis. Advances in Ecological Research 18:271313.Google Scholar
Todd, J. A. 2001. Neogene marine biota of tropical America: molluscan life habits database. http://eusmilia.geology.uiowa.edu/database/mollusc/mollusclifestyles.htm, accessed March 2013.Google Scholar
Van der Zwaan, G. J., and Jorissen, F. J. 1991. Biofacial patterns in river-induced shelf anoxia. InTyson, R. V. and Peterson, T. H., eds. Modern and ancient continental shelf anoxia. Geological Society of London Special Publication 58:6582.Google Scholar
Wolfe, J. A. 1994. Tertiary climate changes at middle latitudes of western North America. Palaeogeography, Palaeoclimatology, Palaeoecology 108:195205.Google Scholar
Yasuhara, M., Hunt, G., Cronin, T. M., Hokanishi, N., Kawahata, H., Tsujimoto, A., and Ishitake, M. 2012a. Climate forcing of Quaternary deep-sea benthic communities in the North Pacific Ocean. Paleobiology 38:162179.Google Scholar
Yasuhara, M., Hunt, G., Breitburg, D., Tsujimoto, A., and Katsuki, K. 2012b. Human-induced marine ecological degradation: micropaleontological perspectives. Ecology and Evolution 425:127.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science 292:686693.Google Scholar