Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T11:10:13.676Z Has data issue: false hasContentIssue false

Differences in growth rate and environment between Tertiary and Quaternary Crassostrea oysters

Published online by Cambridge University Press:  08 February 2016

Michael Xavier Kirby*
Affiliation:
Department of Geology, University of California at Davis, One Shields Avenue, Davis, California 95616

Abstract

Many Tertiary species of Crassostrea appear to have inhabited shallow-marine environments where they produced extremely large and thick shells. In contrast, living Crassostrea species are restricted primarily by marine predation to brackish, hypersaline, and intertidal environments where they produce comparatively smaller and thinner shells. If Crassostrea populations have used estuarine environments as a refuge from predation since the Cretaceous, then their presence in fully marine environments after the Cretaceous is puzzling. In order to interpret differences in environment and shell size, I examined the paleoecology and sclerochronology of two marine and two estuarine populations. Results are consistent with the hypothesis that thicker shells in Tertiary Crassostrea titan deterred increased exposure to fully marine predation. Life spans and growth rates estimated from annually formed growth increments show that C. titan grew significantly faster in shell thickness, as well as lived two to three times longer, than Quaternary Crassostrea virginica. Similar or lower valve-height growth rates in C. titan, as well as thinner shell walls in the attachment area, are consistent with exposure to marine predation, but not with alternative factors, such as higher salinity or alkalinity. Thicker valves in C. titan resulted from the successive addition of chalky deposit layers, in contrast to C. virginica valves, which contain significantly less of this unusual shell structure. A high incidence of incomplete drill holes in juvenile C. titan shells demonstrates that their thick valves were successful in deterring muricid predation. The association of C. titan with other large suspension feeders (barnacles and pectenids), as well as with phosphatic-pellet sediments, suggests that elevated planktic productivity may have supported this reefal community and enabled C. titan to grow thicker shells. The occurrence of both shallow-marine and estuarine Crassostrea since the Cretaceous raises the possibility that estuaries have served as refugia from which populations have dispersed into fully marine environments multiple times through the Cenozoic.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adegoke, O. S. 1969. Stratigraphy and paleontology of the marine Neogene formations of the Coalinga region, California. University of California Publications in Geological Sciences 80:1241.Google Scholar
Azzaroli, A. 1958. L'Oligocene e il Miocene della Somalia. Stratigrafia, tettonica, paleontologia (macroforaminiferi, coralli, molluschi). Palaeontographia Italica (Nuova Serie v. 22) 52:1142.Google Scholar
Beu, A. G., and Maxwell, P. A. 1990. Cenozoic Mollusca of New Zealand. New Zealand Geological Survey Paleontological Bulletin 58:1518.Google Scholar
Braga, J. C., Jimenez, A. P., Martín, J. M., and Rivas, P. 1996. Middle Miocene coral-oyster reefs, Murchas, Granada, southern Spain. SEPM (Society for Sedimentary Geology) Concepts in Sedimentology and Paleontology 5:131139.Google Scholar
Bramlette, M. N. 1946. Monterey Formation of California and origin of its siliceous rocks. U.S. Geological Survey Professional Paper 212:157.Google Scholar
Breithaupt, R. L., and Dugas, R. J. 1979. A study of the southern oyster drill (Thais haemastoma) distribution and density on the oyster seed grounds. Louisiana Wildlife and Fisheries Commission Technical Bulletin 30:120.Google Scholar
Brown, J. R. 1988. Multivariate analyses of the role of environmental factors in seasonal and site-related growth variation in the Pacific oyster Crassostrea gigas. Marine Ecology 45:225236.CrossRefGoogle Scholar
Brown, J. R., and Hartwick, E. B. 1988. Influences of temperature, salinity and available food upon suspended culture of the Pacific oyster, Crassostrea gigas I. Absolute and allometric growth. Aquaculture 70:231251.CrossRefGoogle Scholar
Burnett, W. C. 1990. Phosphorite growth and sediment dynamics in the modern Peru shelf upwelling system. Pp. 6272in Burnett, W. C. and Riggs, S. R., eds. Phosphate deposits of the world, Vol. 3. Neogene to modern phosphorites. Cambridge University Press, Cambridge.Google Scholar
Carriker, M. R. 1981. Shell penetration and feeding by naticacean and muricacean predatory gastropods: a synthesis. Malacologia 20:403422.Google Scholar
Carriker, M. R., and Van Zandt, D. 1972. Predatory behavior of a shell-boring muricid gastropod. Pp. 157244in Winn, H. E. and Olla, B. L., eds. Behavior of marine animals: current perspectives in research. Plenum, New York.CrossRefGoogle Scholar
Carriker, M. R., Palmer, R. E., and Prezant, R. S. 1980. Functional ultramorphology of the dissoconch valves of the oyster Crassostrea virginica. Proceedings of the National Shellfisheries Association 70:139183.Google Scholar
Carter, F. B. 1954. Oil and gas production in California. Pp. 2128in Jahns, R. H., ed. Geology of southern California, Vol. 9. California Division of Mines and Geology, San Francisco.Google Scholar
Carter, J. B. 1985. Depositional environments of the type Temblor Formation, Chico Martinez Creek, Kern County, California. Pp. 518in Graham, S. A., ed. Geology of the Temblor Formation, western San Joaquin Basin, California. Pacific Section, Society of Economic Paleontologists and Mineralogists, Los Angeles.Google Scholar
Chapman, C. R. 1956. Feeding habits of the southern oyster drill, Thais haemastoma. Proceedings of the National Shellfisheries Association 46:169176.Google Scholar
Chinzei, K. 1984. Ecological parallelism in shallow marine benthic associations of Neogene molluscan faunas of Japan. Geobios Mémoire Spécial 8:135143.CrossRefGoogle Scholar
Chinzei, K. 1986a. Shell structure, growth, and functional morphology of an elongate Cretaceous oyster. Palaeontology 29:139154.Google Scholar
Chinzei, K. 1986b. Marine biogeography in northern Japan during the early middle Miocene as viewed from benthic molluscs. Palaeontological Society of Japan 29:161171.Google Scholar
Chinzei, K. 1995. Adaptive significance of the lightweight shell structure in soft bottom oysters. Neus Jahrbuch für Geologie und Paläontologie, Abhandlungen 195:217227.CrossRefGoogle Scholar
Cossmann, M., and Peyrot, A. 1914. Conchologie Néogénique de l'Aquitaine, Tome II. Pélécypodes. Société Linnéenne de Bordeaux, Actes 68:5210.Google Scholar
Coté, R. M. 1991. Paleontology of the “Santa Margarita” Formation on the Coalinga anticline, Fresno County, California. . California State University, Northridge.Google Scholar
Counts, C. L., and Bashore, T. L. 1991. Mollusca of Assateague Island, Maryland and Virginia: a reexamination after seventy-five years. Veliger 34:214221.Google Scholar
Cowen, R. 1983. Algal symbiosis and its recognition in the fossil record. Pp. 431478in Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in recent and fossil benthic communities. Plenum, New York.CrossRefGoogle Scholar
Cvancara, A. M. 1966. Revision of the fauna of the Cannonball Formation (Paleocene) of North and South Dakota. Contributions from the Museum of Paleontology, University of Michigan 20:277374.Google Scholar
Day, R. W., Barkai, A., and Wickens, P. A. 1991. Trapping of three drilling whelks by two species of mussel. Journal of Experimental Marine Biology and Ecology 149:109122.CrossRefGoogle Scholar
De Buisonjé, P. H. 1974. Neogene and Quaternary geology of Aruba, Curaçao and Bonaire. Uitgaven Natuurwetenschappelijke Studiekring Voor Suriname en de Nederlandse Antillen, Utrecht 78:1293.Google Scholar
Dickert, P. F. 1966. Tertiary phosphatic facies of the Coast Ranges. In Bailey, E. H., ed. Geology of Northern California. California Division of Mines and Geology Bulletin 190:289304.Google Scholar
Dockery, D. T. III. 1977. Mollusca of the Moodys Branch Formation, Mississippi. Mississippi Geological, Economic and Topographical Survey Bulletin 120.Google Scholar
Dockery, D. T. III. 1982. Lower Oligocene Bivalvia of the Vicksburg Group in Mississippi. Mississippi Department of Natural Resources, Bureau of Geology, Bulletin 123.Google Scholar
Dollfus, G.-F. 1915. Recherches sur l'Ostrea ginginsis et son groupe. Compte Rendu Sommaire des Séances de la Société Géologique de France 10–12:8285.Google Scholar
Dollfus, G.-F, and Dautzenberg, P. 1920. Conchyliologie du Miocène moyen du bassin de la Loire: Première Partie: Pélécypodes. Mémoires de la Société Géologique de France, Paléontologie 27:1497.Google Scholar
Dudley, E. C., and Dudley, E. C. 1980. Drilling predation on some Miocene marine mollusks. Nautilus 94:6366.Google Scholar
Eaton, J. E., Grant, U. S., and Allen, H. B. 1941. Miocene of Caliente Range and environs, California. American Association of Petroleum Geologists 25:193262.Google Scholar
Fürsich, F. T. 1993. Palaeoecology and evolution of Mesozoic salinity-controlled benthic macroinvertebrate associations. Lethaia 26:327346.CrossRefGoogle Scholar
Fürsich, F. T., and Kauffman, E. G. 1984. Palaeoecology of marginal marine sedimentary cycles in the Albian Bear River Formation of southwestern Wyoming. Palaeontology 27:501536.Google Scholar
Fürsich, F. T., and Kirkland, J. I. 1986. Biostratinomy and paleoecology of a Cretaceous brackish lagoon. Palaios 1:543560.CrossRefGoogle Scholar
Galtsoff, P. S. 1964. The American oyster Crassostrea virginica Gmelin. Fishery Bulletin of the Fish and Wildlife Service 64:1480.Google Scholar
Galtsoff, P. S., Prytherch, H. F., and Engle, J. B. 1937. Natural history and methods of controlling the common oyster drills (Urosalpinx cinerea Say and Eupleura caudata Say). U.S. Department of Commerce, Bureau of Fisheries, Fishery Circular 25:125.Google Scholar
Gardner, J. 1923. New species of mollusca from the Eocene deposits of southwestern Texas. U.S. Geological Survey Professional Paper 131-D:109117.Google Scholar
Gardner, J. 1945. Mollusca of the Tertiary formations of northeastern Mexico. Geological Society of America Memoir 11:1332.CrossRefGoogle Scholar
Garrison, R. E., Douglas, R. G., Pisciotto, K. E., Isaacs, C. M., and Ingle, J. C. 1981. The Monterey Formation and related siliceous rocks of California. Pacific Section, Society of Economic Paleontologists and Mineralogists, Los Angeles.Google Scholar
Garrison, R. E., Kastner, M. and Reimers, C. E. 1990. Miocene phosphogenesis in California. Pp. 285299in Burnett, W. C. and Riggs, S. R., eds. Phosphate deposits of the world, Vol. 3. Neogene to modern phosphorites. Cambridge University Press, Cambridge.Google Scholar
Gunter, G. 1938. Comments on the shape, growth and quality of the American oyster. Science 88:546547.CrossRefGoogle ScholarPubMed
Harper, E. M., and Morton, B. 1994. The biology of Isognomon legumen (Gmelin, 1791) (Bivalvia: Pterioda) at Cape d'Aguilar, Hong Kong, with special reference to predation by muricids. Pp. 405425in Morton, B., ed. Proceedings of the Third International Workshop on the Malacofauna of Hong Kong and Southern China. Hong Kong University Press, Hong Kong.Google Scholar
Harper, E. M., and Skelton, P. W. 1993a. The Mesozoic marine revolution and epifaunal bivalves. Scripta Geologica, Special Issue 2:127153.Google Scholar
Harper, E. M., and Skelton, P. W. 1993b. A defensive value for the thickened periostracum of the Mytiloidea. Veliger 36:3642.Google Scholar
Harris, G. D. 1919. Pelecypoda of the St. Maurice and Claiborne stages. Bulletins of American Paleontology 6:1268.Google Scholar
Harry, H. W. 1985. Synopsis of the supraspecific classification of living oysters (Bivalvia: Gryphaeidae and Ostreidae). Veliger 28:121158.Google Scholar
Harry, H. W., and Dockery, D. T. III. 1983. Notes on the lower Oligocene oysters of Mississippi. Mississippi Geology 4:714. Bureau of Geology, Mississippi Department of Natural Resources, Jackson.Google Scholar
Hayasaka, S. 1960. Large-sized oysters from the Japanese Pleistocene and their paleoecological implications. Tohoku University, Sendai, Japan, Science Reports, 2d series (Geology) 4:356370.Google Scholar
Herb, R. 1984. Récifs à huîtres récents et Miocènes. Pp. 22.122.12 in Geister, J. and Herb, R., eds. Géologie et paleoecologie des récifs. Institut de Géologie de l'Université de Berne, Berne.Google Scholar
Howe, H. V. 1937. Large oysters from the Gulf Coast Tertiary. Journal of Paleontology 11:355366.Google Scholar
Isaacs, C. M., and Garrison, R. E. 1983. Petroleum generation and occurrence in the Miocene Monterey Formation, California. Pacific Section, Society of Economic Paleontologists and Mineralogists, Los Angeles.Google Scholar
Jimenez, A. P., Braga, J. C., and Martin, J. M. 1991. Oyster distribution in the upper Tortonian of the Almanzora corridor (Almeria, S.E. Spain). Geobios 24:725734.CrossRefGoogle Scholar
Jones, D. S. 1988. Sclerochronology and the size versus age problem. Pp. 93108in McKinney, M. L., ed. Heterochrony in evolution. Plenum, New York.CrossRefGoogle Scholar
Jones, D. S., Williams, D. F., and Spero, H. J. 1988. More light on photosymbionts in fossil mollusks: The case of Mercenaria “tridacnoides.” Palaeogeography, Palaeoclimatology, Palaeoecology 64:141152.CrossRefGoogle Scholar
Jones, D. S., Quitmyer, I. R., Arnold, W. S., and Marelli, D. C. 1990. Annual shell banding, age, and growth rate of hard clams (Mercenaria spp.) from Florida. Journal of Shellfish Research 9:215225.Google Scholar
Jung, P. 1974. Eocene mollusks from Curaçao, West Indies. Verhandlungen der Naturforschenden Gesellschaft in Basel 84:483500.Google Scholar
Kamp, P. J. J., Harmsen, F. J., Nelson, C. S., and Boyle, S. F. 1988. Barnacle-dominated limestone with giant cross-beds in a non-tropical, tide-swept, Pliocene forearc seaway, Hawke's Bay, New Zealand. Sedimentary Geology 60:173195.CrossRefGoogle Scholar
Kaufmann, K. W. 1981. Fitting and using growth curves. Oecologia 49:293299.CrossRefGoogle ScholarPubMed
Kellogg, A. R. 1931. Pelagic mammals from the Temblor Formation of the Kern River region, California. Proceedings of the California Academy of Sciences 19:217397.Google Scholar
Kennedy, V. S., Newell, R. I. E., and Eble, A. F., eds. 1996. The eastern oyster: Crassostrea virginica. Maryland Sea Grant College, College Park, Md.Google Scholar
Kent, R. W. 1988. Making dead oysters talk: techniques for analyzing oysters from archaeological sites. Maryland Historical Trust, St. Mary's City, Md.Google Scholar
Kirby, M. X. 2000. Paleoecological differences between Tertiary and Quaternary Crassostrea oysters, as revealed by stable isotope sclerochronology. Palaios 15:4049.2.0.CO;2>CrossRefGoogle Scholar
Kirby, M. X., Soniat, T. M., and Spero, H. J. 1998. Stable isotope sclerochronology of Pleistocene and Recent oyster shells (Crassostrea virginica). Palaios 13:560569.CrossRefGoogle Scholar
Langdon, C. J., and Newell, R. I. E. 1996. Digestion and nutrition in larvae and adults. Pp. 231269in Kennedy, et al. 1996.Google Scholar
Laurain, M. 1984. Structure et évolution spatio-temporelle d'une population de Crassostrea gryphoides (Schlotheim): le crassat Langhien de la carrière du Mas Cambelliès à Loupian (Hérault). Géologie Méditerranéenne 11:295301.CrossRefGoogle Scholar
Lawrence, D. R. 1975. Paleoenvironmental setting of Crassostrea gigantissima (Finch) communities, Coastal Plain of North Carolina. Southeastern Geology 17:5566.Google Scholar
Lawrence, D. R. 1995. Diagnosis of the genus Crassostrea (Bivalvia, Ostreidae). Malacologia 36:185202.Google Scholar
Littlewood, T. J., and Donovan, S. K. 1988. Variations of Recent and fossil Crassostrea in Jamaica. Palaeontology 31:10131028.Google Scholar
Loosanoff, V. L. 1956. Two obscure oyster enemies in New England waters. Science 123:11191120.CrossRefGoogle ScholarPubMed
MacDonald, B. A., and Thompson, R. J. 1985. Influence of temperature and food availability on the ecological energetics of the giant scallop Placopecten magellanicus. I. Growth rates of shell and somatic tissue. Marine Ecology Progress Series 25:279294.CrossRefGoogle Scholar
Malchus, N. 1990. Revision der Kreide-Austern (Bivalvia, Pteriomorphia) Ägyptens (biostratigraphie, systematik). Berliner geowissenschaftliche Abhandlungen, Reihe A 125:1231.Google Scholar
Malchus, N. 1998. Multiple parallel evolution and phylogenetic significance of shell chambers and chomata in the Ostreoidea (Bivalvia). Pp. 393407in Johnston, P. A. and Haggart, J. W., eds. Bivalves: an eon of evolution. University of Calgary Press, Calgary.Google Scholar
Malouf, R. E., and Breese, W. P. 1977. Seasonal changes in the effects of temperature and water flow rate on the growth of juvenile Pacific oysters, Crassostrea gigas (Thunberg). Aquaculture 12:113.CrossRefGoogle Scholar
Medcof, J. C., and Kerswill, C. J. 1965. Effects of light on growth of oysters, mussels, and quahogs. Journal of the Fisheries Research Board of Canada 22:281288.CrossRefGoogle Scholar
Mirecki, J. E., Wehmiller, J. F., and Skinner, A. F. 1995. Geochronology of Quaternary coastal plain deposits, southeastern Virginia, U.S.A. Journal of Coastal Research 11:11351144.Google Scholar
Moore, E. J. 1987. Tertiary marine pelecypods of California and Baja California: plicatulidae to Ostreidae. U.S. Geological Survey Professional Paper 1228-C.1–53.CrossRefGoogle Scholar
Nakagawa, T. 1998. Miocene molluscan fauna and paleoenvironment in the Niu Mountains, Fukui Prefecture, Central Japan. Science Reports of the Institute of Geoscience. University of Tuskuba B 19:61185.Google Scholar
Nelson, C. S., Burns, D. A., and Rodgers, K. A. 1983. The taxonomic status, and isotopic evidence for paleoenvironments, of giant oysters from the Oligocene Te Kuiti Group, South Auckland, New Zealand. New Zealand Journal of Geology and Geophysics 26:289299.CrossRefGoogle Scholar
Newton, R. B., and Smith, E. A. 1912. On the survival of a Miocene oyster in Recent seas. Records of the Geological Survey of India 42:115.Google Scholar
O'Beirn, F. X., Walker, R. L., Heffernan, P. B. 1996. Enhancement of subtidal eastern oyster, Crassostrea virginica (Gmelin, 1791), recruitment using mesh bag enclosures. Journal of Shellfish Research 15:313318.Google Scholar
Obradovich, J. D., and Naeser, C. W. 1981. Geochronology bearing on the age of the Monterey Formation and siliceous rocks in California. Pp. 8795in Garrison, et al. 1981.Google Scholar
Ortmann, A. E. 1897. On some of the large oysters of Patagonia. American Journal of Science 4:355356.CrossRefGoogle Scholar
Palmer, A. R. 1992. Calcification in marine molluscs: how costly is it? Proceedings of the National Academy of Sciences USA 89:13791382.CrossRefGoogle Scholar
Palmer, K. V. W., and Brann, D. C. 1965. Catalogue of the Paleocene and Eocene Mollusca of the southern and eastern United States, Part 1. Bulletins of American Paleontology 48:1466.Google Scholar
Palmer, R. E., and Carriker, M. R. 1979. Effects of cultural conditions on morphology of the shell of the oyster Crassostrea virginica. Proceedings of the National Shellfisheries Association 69:5872.Google Scholar
Parker, R. H. 1955. Changes in the invertebrate fauna, apparently attributable to salinity changes, in the bays of central Texas. Journal of Paleontology 29:193211.Google Scholar
Perri, M. L., and Fritsche, A. E. 1988. Stratigraphy and depositional environments of the Miocene Branch Canyon Formation in the Sierra Madre, Caliente Range, and Sespe Creek areas, California. In Bazeley, W. J. M., ed. Tertiary tectonics and sedimentation in the Cuyama Basin, San Luis Obispo, Santa Barbara, and Ventura Counties, California. Publication 59:8798. Pacific Section, Society of Economic Paleontologists and Mineralogists, Los Angeles.Google Scholar
Petraitis, P. S. 1987. Immobilization of the predatory gastropod, Nucella lapillus, by its prey, Mytilus edulis. Biological Bulletin 172:307314.CrossRefGoogle Scholar
Pollard, J. F. 1973. Experiments to re-establish historical oyster seed grounds and to control the southern oyster drill. Louisiana Wildlife and Fisheries Commission Technical Bulletin 6:126.Google Scholar
Remane, A., and Schlieper, C. 1971. Biology of brackish water. Wiley, New York.Google Scholar
Roberts, A. E. 1989. Geology and resources of Miocene Coast Ranges and Cenozoic offshore continental shelf phosphate deposits of California, USA. Pp. 2435in Notholt, A. J. G., Sheldon, R. P., and Davidson, D. F., eds. Phosphate deposits of the world, Vol. 2. Phosphate rock resources. Cambridge University Press, Cambridge.Google Scholar
Roberts, A. E., and Vercoutere, T. L. 1986. Geology and geochemistry of the upper Miocene phosphate deposits near New Cuyama, Santa Barbara County, California. U.S. Geological Survey Bulletin 1634:189.Google Scholar
Rutsch, R. F. 1955. Die fazielle bedeutung der crassostreen (Ostreidae, Mollusca) im Helvétien der umgebung von Bern. Eclogae Geologicae Helvetiae 48:453464.Google Scholar
Shumway, S. E. 1996. Natural environmental factors. Pp. 467513in Kennedy, et al. 1996.Google Scholar
Sohl, N. F., and Kauffman, E. G. 1964. Giant Upper Cretaceous oysters from the Gulf Coast and Caribbean. U.S. Geological Survey Professional Paper 483-H:122.CrossRefGoogle Scholar
Spencer, R. S., and Campbell, L. D. 1987. The fauna and paleoecology of the late Pleistocene marine sediments of southeastern Virginia. Bulletins of American Paleontology 92:1124.Google Scholar
Stanton, R. J. 1966. Megafauna of the upper Miocene Castaic Formation, Los Angeles County, California. Journal of Paleontology 40:2140.Google Scholar
Stanton, R. J. 1982. Molluscan paleoecology and depositional environment of the Miocene Castaic Formation, Ridge Basin, Southern California. Pp. 211218in Crowell, J. C. and Link, M. H., eds. Geologic history of Ridge Basin, Southern California. Pacific Section, Society of Economic Paleontologists and Mineralogists, Los Angeles.Google Scholar
Stenzel, H. B. 1971. Oysters. Pp. N953N1224in Cox, L. R. et al. Mollusca 6, Bivalvia. Part N ofMoore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America and University of Kansas Press, Boulder, Colo.Google Scholar
Stephenson, L. W. 1952. Larger invertebrate fossils of the Woodbine Formation (Cenomanian) of Texas. U.S. Geological Survey Professional Paper 242:1226.Google Scholar
Strathmann, R. R., Fenaux, L., Sewell, A. T., and Strathmann, M. F. 1993. Abundance of food affects relative size of larval and postlarval structures of a molluscan veliger. Biological Bulletin 185:232239.CrossRefGoogle ScholarPubMed
Thor, D. R. 1978. Depositional environments and paleogeographic setting of the Santa Margarita Formation, Ventura County, California. In Fritsche, A. E., ed. Depositional environments of Tertiary rocks along Sespe Creek, Ventura County, California. Pacific Coast Paleogeography Field Guide 3:4259. Pacific Section, Society of Economic Paleontologists and Mineralogists, Los Angeles.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation: an ecological history of life. Princeton University Press, Princeton, N.J.CrossRefGoogle Scholar
Vermeij, G. J. 1995. Economics, volcanoes, and Phanerozoic revolutions. Paleobiology 21:125152.CrossRefGoogle Scholar
Ward, L. W., and Blackwelder, B. W. 1987. Late Pliocene and early Pleistocene Mollusca from the James City and Chowan River formations at the Lee Creek Mine. In Ray, C. E., ed. Geology and paleontology of the Lee Creek Mine, North Carolina, II. Smithsonian Contributions to Paleobiology 61:113283.CrossRefGoogle Scholar
Wayne, T. A. 1987. Responses of a mussel to shell-boring snails: defensive behaviour in Mytilus edulis? Veliger 30:138147.Google Scholar
Wells, H. W., and Gray, I. E. 1960. Some oceanic sub-tidal oyster populations. Nautilus 73:139146.Google Scholar
White, C. A. 1884. A review of the fossil Ostreidae of North America; and a comparison of the fossil with the living forms. Pp. 273308in Fourth annual report of the United States Geological Survey to the Secretary of the Interior. Government Printing Office, Washington.Google Scholar
White, M. E., and Wilson, E. A. 1996. Predators, pests, and competitors. Pp. 559579in Kennedy, et al. 1996.Google Scholar
Wilber, D. H. 1992. Associations between freshwater inflows and oyster productivity in Apalachicola Bay, Florida. Estuarine, Coastal and Shelf Science 35:179190.CrossRefGoogle Scholar
Woodring, W. P. 1973. Affinities of Miocene marine molluscan faunas on Pacific side of Central America. Publicaciones Geològicas del Instituto Centroamericano de Investigación y Tecnología Industrial 4:179187.Google Scholar
Woodring, W. P. 1982. Geology and paleontology of Canal Zone and adjoining parts of Panama. U.S. Geological Survey Professional Paper 306-F:541759.Google Scholar
Wright, M. M., and Francis, L. 1984. Predator deterrence by flexible shell extensions of the horse mussel Modiolus modiolus. Veliger 27:140142.Google Scholar
Zullo, V. A. 1979. Thoracican Cirripedia of the lower Pliocene Pancho Rico Formation, Salinas Valley, Monterey County, California. Contributions in Science (Los Angeles) 303:113.Google Scholar