Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T19:14:51.176Z Has data issue: false hasContentIssue false

Did shell-crushing predators drive the evolution of ammonoid septal shape?

Published online by Cambridge University Press:  13 April 2021

Erynn H. Johnson*
Affiliation:
Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania19104, U.S.A. E-mail: [email protected], [email protected].
Briana M. DiMarco
Affiliation:
Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104, U.S.A. E-mail: [email protected]
David J. Peterman
Affiliation:
Department of Earth and Environmental Sciences, Wright State University, Dayton, Ohio45435, U.S.A
Aja M. Carter
Affiliation:
Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania19104, U.S.A. E-mail: [email protected], [email protected].
Warren D. Allmon
Affiliation:
Paleontological Research Institution, Ithaca, New York14850, U.S.A.; and Department of Earth and Atmospheric Science, Cornell University, Ithaca, New York14850, U.S.A. E-mail: [email protected]
*
*Corresponding author.

Abstract

For centuries, paleontologists have sought functional explanations for the uniquely complex internal walls (septa) of ammonoids, extinct shelled cephalopods. Ammonoid septa developed increasingly complex fractal margins, unlike any modern shell morphologies, throughout more than 300 million years of evolution. Some have suggested these morphologies provided increased resistance to shell-crushing predators. We perform the first physical compression experiments on model ammonoid septa using controlled, theoretical morphologies generated by computer-aided design and 3D printing. These biomechanical experiments reveal that increasing complexity of septal margins does not increase compression resistance. Our results raise the question of whether the evolution of septal shape may be tied closely to the placement of the siphuncle foramen (anatomic septal hole). Our tests demonstrate weakness in the centers of uniformly thick septa, supporting work suggesting reinforcement by shell thickening at the center of septa. These experiments highlight the importance of 3D reconstruction using idealized theoretical morphologies that permit the testing of long-held hypotheses of functional evolutionary drivers by recreating extinct morphologies once rendered physically untestable by the fossil record.

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present addresses: Paleontological Research Institution, Ithaca, New York 14850, U.S.A.

Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, U.S.A.

§

Present address: Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, U.S.A. E-mail: [email protected]

References

Literature Cited

Arkell, W. J., Furnish, W. J., Kummel, B., Miller, A. K., Moore, R. C., Schindewolf, O. H., and Wright, C. W.. 1957. Mollusca 4, Cephalopoda, Ammonoidea. Part L of Moore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America, New York, and University of Kansas, Lawrence.Google Scholar
Blender Online Community. 2020. Blender 2.76—a 3D modelling and rendering package. Stichting Blender Foundation, Amsterdam. http://www.blender.org.Google Scholar
Boyajian, G., and Lutz, T.. 1992. Evolution of biological complexity and its relation to taxonomic longevity in the Ammonoidea. Geology 20:983986.2.3.CO;2>CrossRefGoogle Scholar
Buckland, W. 1836. Geology and mineralogy considered with reference to natural theology. Treatise VI. The Bridgewater treatise on the power, wisdom, and goodness of God as manifested in the Creation. W. Pickering, London.CrossRefGoogle Scholar
Celli, A., Tucci, A., Esposito, L., and Palmonari, C.. 2003. Fractal analysis of cracks in alumina–zirconia composites. Journal of the European Ceramic Society 23:469479.CrossRefGoogle Scholar
Checa, A. G., Cartwright, J. H. E., Sanchez-Almazo, I., Andrade, J. P., and Ruiz-Raya, F.. 2015. The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor. Scientific Reports 5:1513.CrossRefGoogle ScholarPubMed
Crofts, S. B., and Summers, A. P.. 2014. How to best smash a snail: the effect of tooth shape on crushing load. Journal of the Royal Society Interface 11:20131053.CrossRefGoogle ScholarPubMed
Daniel, T. L., Helmuth, B. S., Saunders, W. B., and Ward, P. D.. 1997. Septal complexity in ammonoid cephalopods increased mechanical risk and limited depth. Paleobiology 23:470481.CrossRefGoogle Scholar
Ebel, K. 1992. Mode of life and soft body shape of heteromorph ammonites. Lethaia 25:179193.CrossRefGoogle Scholar
Hassan, M. A., Westermann, G. E., Hewitt, R. A., and Dokainish, M. A.. 2002. Finite-element analysis of simulated ammonoid septa (extinct Cephalopoda): septal and sutural complexities do not reduce strength. Paleobiology 28:113126.2.0.CO;2>CrossRefGoogle Scholar
Hewitt, R. A., and Westermann, G. E. G.. 1997. Mechanical significance of ammonoid septa with complex sutures. Lethaia 30:205212.CrossRefGoogle Scholar
Johnson, E. 2021. Breaking down shell strength: inferences from experimental compression and future directions enabled by 3D printing. Biological Reviews. doi: 10.1111/brv.12692.CrossRefGoogle ScholarPubMed
Johnson, E., and Carter, A.. 2019. Defossilization: a review of 3D printing in experimental paleontology. Frontiers in Ecology and Evolution 7:430.CrossRefGoogle Scholar
Johnson, E. H. 2020. Experimental tests of bivalve shell shape reveal potential tradeoffs between mechanical and behavioral defenses. Scientific Reports 10:112.CrossRefGoogle ScholarPubMed
Jones, D. L. 1963. Upper Cretaceous (Campanian and Maastrichtian) ammonites from southern Alaska. U.S. Geological Survey Professional Paper 432:1–53.Google Scholar
Kauffman, E. G., and Kesling, R. V.. 1960. An Upper Cretaceous ammonite bitten by a mosasaur. Contributions from the Museum of Paleontology, University of Michigan 15:193–248.Google Scholar
Kerr, J. P., and Kelley, P. H.. 2015. Assessing the influence of escalation during the Mesozoic Marine Revolution: shell breakage and adaptation against enemies in Mesozoic ammonites. Palaeogeography, Palaeoclimatology, Palaeoecology 440:632646.CrossRefGoogle Scholar
Keupp, H. 2012. Atlas zur paläopathologie der cephalopoden. Fachrichtung Paläontologie, Institut für Geologische Wissenschaften, Freie Universität Berlin.Google Scholar
Klompmaker, A. A., Waljaard, N. A., and Fraaije, R. H.. 2009. Ventral bite marks in Mesozoic ammonoids. Palaeogeography, Palaeoclimatology, Palaeoecology 280:245257.CrossRefGoogle Scholar
Klug, C., and Hoffmann, R.. 2015. Ammonoid septa and sutures. Pp. 4590 in Klug, C., Korn, D., Baets, K. De, Kruta, I., and Mapes, R. H., eds. Ammonoid paleobiology: from anatomy to ecology. Springer, Dordrecht, Netherlands.CrossRefGoogle Scholar
Klug, C., Meyer, E., Richter, U., and Korn, D.. 2008. Soft-tissue imprints in fossil and Recent cephalopod septa and septum formation. Lethaia 41:477492.CrossRefGoogle Scholar
Kolmann, M. A., Crofts, S. B., Dean, M. N., Summers, A. P., and Lovejoy, N. R.. 2015. Morphology does not predict performance: jaw curvature and prey crushing in durophagous stingrays. Journal of Experimental Biology 218:39413949.Google Scholar
Kulicki, C., and Mutvei, H.. 1988. Functional interpretation of ammonoid septa. Pp. 713718 in Wiedmann, J. and Killmann, J., eds. Cephalopods—present and past. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany.Google Scholar
Kulicki, C., Tanabe, K., Landman, N. H., and Kaim, A.. 2015. Ammonoid shell microstructure. Pp. 321357 in Klug, C., Korn, D., Baets, K. De, Kruta, I., and Mapes, R. H., eds. Ammonoid paleobiology: from anatomy to ecology. Springer, Dordrecht, Netherlands.CrossRefGoogle Scholar
Lakowitz, T., Brönmark, C., and Nyström, P. E. R.. 2008. Tuning in to multiple predators: conflicting demands for shell morphology in a freshwater snail. Freshwater Biology 53:21842191.Google Scholar
Landman, N. H., Cobban, W. A., and Larson, N. L.. 2012. Mode of life and habitat of scaphitid ammonites. Geobios 45:8798.CrossRefGoogle Scholar
Landman, N. H., Goolaerts, S., Jagt, J. W., Jagt-Yazykova, E. A., Machalski, M., and Yacobucci, M. M.. 2014. Ammonite extinction and nautilid survival at the end of the Cretaceous. Geology 42:707710.CrossRefGoogle Scholar
Landman, N. H., Goolaerts, S., Jagt, J. W., Jagt-Yazykova, E. A., and Machalski, M.. 2015. Ammonites on the brink of extinction: diversity, abundance, and ecology of the Order Ammonoidea at the Cretaceous/Paleogene (K/Pg) boundary. Pp. 497553 in Klug, C., Korn, D., Baets, K. De, Kruta, I., and Mapes, R. H., eds. Ammonoid paleobiology: from macroevolution to paleogeography. Springer, Dordrecht, Netherlands.CrossRefGoogle Scholar
Lemanis, R. 2020. The ammonite septum is not an adaptation to deep water: re-evaluating a centuries-old idea. Proceedings of the Royal Society of London B 287:20201919.Google Scholar
Lemanis, R., and Zlotnikov, I.. 2018. Finite element analysis as a method to study molluscan shell mechanics. Advanced Engineering Materials 20:1700939.CrossRefGoogle Scholar
Lemanis, R., Korn, D., Zachow, S., Rybacki, E., and Hoffmann, R.. 2016a. The evolution and development of cephalopod chambers and their shape. PLoS ONE 11:e0151404.CrossRefGoogle Scholar
Lemanis, R., Zachow, S., and Hoffmann, R.. 2016b. Comparative cephalopod shell strength and the role of septum morphology on stress distribution. PeerJ 4:e2434.CrossRefGoogle Scholar
Lewy, Z. 2003. Reply to Checa and to Hewitt and Westermann. Journal of Paleontology 77:796798.2.0.CO;2>CrossRefGoogle Scholar
Li, Y., Ortiz, C., and Boyce, M. C.. 2012. Bioinspired, mechanical, deterministic fractal model for hierarchical suture joints. Physical Review E 85:031901.CrossRefGoogle ScholarPubMed
Mapes, R. H., and Chaffin, D. T.. 2003. Predation on cephalopods. Pp. 177213 in Kelley, P., Kowalewski, M., Michal, H., and Thor, A., eds. Predator–prey interactions in the fossil record. Springer, Boston.CrossRefGoogle Scholar
Mutvei, H. 1967. On the microscopic shell structure in some Jurassic ammonoids. Neues Jahrbuch für Geologie und Paläontologie–Abhandlungen 129:157166.Google Scholar
Newell, N. D. 1949. Phyletic size increase, an important trend illustrated by fossil invertebrates. Evolution 3:103124.CrossRefGoogle ScholarPubMed
Peterman, D. J., and Barton, C. C.. 2019. Power scaling of ammonitic suture patterns from Cretaceous Ancyloceratina: constraints on septal/sutural complexity. Lethaia 52:7790.CrossRefGoogle Scholar
Peterman, D. J., Ciampaglio, C. N., Shell, R. C., and Yacobucci, M. M.. 2019. Mode of life and hydrostatic stability of orthoconic ectocochleate cephalopods: hydrodynamic analyses of restoring moments from 3D printed, neutrally buoyant models. Acta Palaeontologica Polonica 64:441460.CrossRefGoogle Scholar
Pia, J. 1923. Über die ethologische Bedeutung einiger Hauptzüge in der Stammesgeschichte der Cephalopoden. Annalen des Naturhistorischen Museums in Wien, 5073.Google Scholar
R Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org.Google Scholar
Richter, A. E. 2009. Ammoniten-Gehäuse mit Bissspuren. Berliner Paläobiologische Abhandlungen 10:297305.Google Scholar
Romer, A. S. 1966. Vertebrate paleontology. University of Chicago Press, Chicago.Google Scholar
Salinas, C., and Kisailus, D.. 2013. Fracture mitigation strategies in gastropod shells. JOM 65:473480.CrossRefGoogle Scholar
Saunders, W. B. 1995. The ammonoid suture problem: relationships between shell and septum thickness and suture complexity in Paleozoic ammonoids. Paleobiology 21:343355.CrossRefGoogle Scholar
Schulp, A. S. 2005. Feeding the mechanical mosasaur: what did Carinodens eat? Netherlands Journal of Geosciences 84:345357.CrossRefGoogle Scholar
Stein, R. A., Goodman, C. G., and Marschall, E. A.. 1984. Using time and energetic measures of cost in estimating prey value for fish predators. Ecology 65:702715.CrossRefGoogle Scholar
Tajika, A., Nützel, A., and Klug, C.. 2018. The old and the new plankton: ecological replacement of associations of mollusc plankton and giant filter feeders after the Cretaceous? PeerJ 6:e4219.CrossRefGoogle ScholarPubMed
Tajika, A., Landman, N. H., Hoffmann, R., Lemanis, R., Morimoto, N., Ifrim, C., and Klug, C.. 2020. Chamber volume development, metabolic rates, and selective extinction in cephalopods. Scientific Reports 10:2950.CrossRefGoogle ScholarPubMed
Takeda, Y., Tanabe, K., Sasaki, T., and Landman, N. H.. 2016. Durophagous predation on scaphitid ammonoids in the Late Cretaceous Western Interior Seaway of North America. Lethaia 49:2842.CrossRefGoogle Scholar
Teichert, C. 1967. Major features of cephalopod evolution. Pp. 162210 in Teichert, C. and Yochelson, E. L., eds. Essays in paleontology and stratigraphy: R. C. Moore commemorative volume. University of Kansas Press, Lawrence.Google Scholar
Teichert, C., Moore, R. C., and Nodine Zeller, D. E.. 1964. Rhyncholites. Pp. K467K484 in Cephaloda Nautiloidea. Part K of R. C. Moore, ed., Treatise on invertebrate paleontology. Geological Society of America, New York, and University of Kansas Press, Lawrence.Google Scholar
Tintori, A. 1998. Fish biodiversity in the marine Norian (Late Triassic) of northern Italy: the first Neopterygian radiation. Italian Journal of Zoology 65:193198.CrossRefGoogle Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245258.CrossRefGoogle Scholar
von Huene, F. R. 1956. Paläontologie und Phylogenie der niederen Tetrapoden. Guastav Fischer, Jena, Germany, 716.Google Scholar
Vullo, R. 2011. Direct evidence of hybodont shark predation on Late Jurassic ammonites. Naturwissenschaften 98:545549.CrossRefGoogle ScholarPubMed
Wickham, H. 2016. ggplot2: elegant graphics for data analysis. Springer-Verlag New York.CrossRefGoogle Scholar
Wright, C. W. 1996. Mollusca 4, Cretaceous Ammonoidea. Part L (revised) of Kaesler, R. L., ed. Treatise on invertebrate paleontology, vol. 4. Geological Society of America, Boulder, Colo. and University of Kansas, Lawrence.Google Scholar
Zirka, A. I., Malezhik, M. P., and Chernyshenko, I. S.. 2004. Stress concentration in an orthotropic plate with a circular hole under dynamic loading. International Applied Mechanics 40:226230.CrossRefGoogle Scholar