Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T19:12:06.783Z Has data issue: false hasContentIssue false

Developmental aspects of morphological disparity dynamics: a simple analytical exploration

Published online by Cambridge University Press:  08 April 2016

Sylvain Gerber
Affiliation:
Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637
Gunther J. Eble
Affiliation:
Centre National de la Recherche Scientifique, UMR 5561 Biogéosciences, Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France. E-mail: [email protected]
Pascal Neige
Affiliation:
Centre National de la Recherche Scientifique, UMR 5561 Biogéosciences, Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France. E-mail: [email protected]

Abstract

We have devised a simple model for assessing the role of development in shaping the evolution of morphological disparity. Disparity of a clade at any given time is expressed in terms of the developmental dynamics that lead to the variety of adult morphotypes observed. We use assumed phenotypic manifestations of developmental processes, as they could be detected from allometric characterizations, to distinguish a few, nonexclusive types of evolutionary changes in ontogeny. On the basis of this formalization, we describe the diversification of hypothetical clades, using the standard curve of adult morphological disparity, the curve of juvenile disparity, and the curve of allometric disparity, the latter quantifying the diversification of clades in allometric space. Contrasts of these curves reflect the underlying developmental scheme that drives temporal changes in disparity. We then vary the parameters of the model to assess the expected signature of each metric under specific conditions: changes in the relative frequencies of the types of evolutionary developmental changes, changes in the transition magnitude attached to each of them, and effects of temporal variation in average adult size on disparity curves and patterns of morphospace occupation. Results emphasize the potential contribution of these proxies for developmental dynamics—juvenile morphological disparity, allometric disparity, and average adult size—in enriching the interpretation of standard disparity curves and the description of clade histories, with possible process-oriented inferences.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, D. C., Rohlf, F. J., and Slice, D. E. 2004. Geometric morphometrics: ten years of progress following the “revolution.” Italian Journal of Zoology 71:516.Google Scholar
Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. 1979. Size and shape in ontogeny and phylogeny. Paleobiology 5:296317.Google Scholar
Bonner, J. T. 1968. Size change in development and evolution. Journal of Paleontology 42:115.CrossRefGoogle Scholar
Bookstein, F. L. 1989. “Size and shape”: a comment on semantics. Systematic Zoology 38:173180.Google Scholar
Briggs, D. E. G., Fortey, R. A., and Wills, M. A. 1992. Morphological disparity in the Cambrian. Science 256:16701673.Google Scholar
Cock, A. G. 1966. Genetical aspects of metrical growth and form in animals. Quarterly Review of Biology 41:131190.Google Scholar
Dommergues, J.-L., Montuire, S., and Neige, P. 2002. Size patterns through time: the case of the Early Jurassic ammonite radiation. Paleobiology 28:423434.Google Scholar
Eble, G. J. 1998. The role of development in evolutionary radiations. Pp. 132161 in McKinney, M. L. and Drake, J. A., eds. Biodiversity dynamics: turnover of populations, taxa and communities. Columbia University Press, New York.Google Scholar
Eble, G. J. 2000. Contrasting evolutionary flexibility in sister groups: disparity and diversity in Mesozoic atelostomate echinoids. Paleobiology 26:5679.Google Scholar
Eble, G. J. 2002. Multivariate approaches to development and evolution. Pp. 5178 in Minus-Purvis, N. and McNamara, K. J., eds. Human evolution through developmental change. Johns Hopkins University Press, Baltimore.Google Scholar
Eble, G. J. 2003. Developmental morphospaces and evolution. Pp. 3565 in Crutchfield, J. P. and Schuster, P., eds. Evolutionary dynamics. Oxford University Press, Oxford.Google Scholar
Eble, G. J. 2004. The macroevolution of phenotypic integration. Pp. 253273 in Pigliucci, M. and Preston, K., eds. Phenotypic integration: studying the ecology and evolution of complex phenotypes. Oxford University Press, Oxford.Google Scholar
Eble, G. J. 2005. Morphological modularity: empirical aspects and macroevolutionary implications. Pp. 221238 in Callebaut, W. and Rasskin-Gutman, D., eds. Modularity: understanding the development and evolution of complex natural systems. MIT Press, Cambridge.Google Scholar
Erwin, D. H. 2007. Disparity: morphological pattern and developmental context. Paleontology 50:5773.CrossRefGoogle Scholar
Erwin, D. H., Valentine, J. W., and Sepkoski, J. J. Jr. 1987. A comparative study of diversification events: the early Paleozoic vs. the Mesozoic. Evolution 41:11771186.Google Scholar
Foote, M. 1990. Nearest-neighbor analysis of trilobite morphospace. Systematic Zoology 39:371382.CrossRefGoogle Scholar
Foote, M. 1991. Morphologic and taxonomic diversity in a clade's history: the blastoid record and stochastic simulation. Contribution from the Museum of Paleontology, University of Michigan 28:101140.Google Scholar
Foote, M. 1993. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19:185204.Google Scholar
Foote, M. 1996. Models of morphological diversification. Pp. 6286 in Jablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Foote, M. 1997. The evolution of morphological diversity. Annual Review of Ecology, Evolution, and Systematics 28:129152.CrossRefGoogle Scholar
Gavrilets, S. 1999. Dynamics of clade diversification on the morphological hypercube. Proceedings of the Royal Society of London B 266:817824.CrossRefGoogle Scholar
Gerber, S., Neige, P., and Eble, G. J. 2007. Combining ontogenetic and evolutionary scales of morphological disparity: a study of early Jurassic ammonites. Evolution and Development 9:472482.Google Scholar
Gerber, S., Eble, G. J., and Neige, P. 2008. Allometric space and allometric disparity: a developmental perspective in the macroevolutionary analysis of morphological disparity. Evolution 62:14501457.Google Scholar
Godfrey, L. R., and Sutherland, M. R. 1995. Flawed inference: why size-based tests of heterochronic processes do not work. Journal of Theoretical Biology 172:4361.Google Scholar
Godfrey, L. R. 1996. Paradox of peramorphic paedomorphosis: heterochrony and human evolution. American Journal of Physical Anthropology 99:1742.Google Scholar
Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biological Reviews 41:587640.Google Scholar
Gould, S. J. 1975. Allometry in primates, with emphasis on scaling and the evolution of the brain. Contributions to Primatology 5:244292.Google Scholar
Gould, S. J. 1977. Ontogeny and phylogeny. Harvard University Press, Cambridge.Google Scholar
Gould, S. J. 1989. Wonderful life. Norton, New York.Google Scholar
Gould, S. J. 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology 17:411423.Google Scholar
Gould, S. J., Raup, D. M., Sepkoski, J. J. Jr., Schopf, T. J. M., and Simberloff, D. S. 1977. The shape of evolution: a comparison of real and random clades. Paleobiology 3:2340.Google Scholar
Hall, B. K., and Miyake, T. 1995. How do embryos measure time? Pp. 320 in McNamara, K. J., ed. Evolutionary change and heterochrony. Wiley, Chichester, United Kingdom. Google Scholar
Huxley, J. S. 1932. Problems of relative growth. Methuen, London.Google Scholar
Jolicoeur, P. 1963. The multivariate generalization of the allometry equation. Biometrics 19:497499.Google Scholar
Jones, D. S. 1988. Sclerochronology and the size versus age problem. Pp. 93108 in McKinney, M. L., ed. Heterochrony in evolution: a multidisciplinary approach. Plenum, New York.Google Scholar
Jones, D. S., and Gould, S. J. 1999. Direct measurement of age in fossil Gryphaea: the solution to a classic problem in heterochrony. Paleobiology 25:158187.CrossRefGoogle Scholar
Klingenberg, C. P. 1996. Multivariate allometry. Pp. 2349 in Marcus, L. F., Corti, M., Loy, A., Naylor, G. J. P., and Slice, D. E., eds. Advance in morphometrics. Plenum, New York.Google Scholar
Klingenberg, C. P. 1998. Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biological Reviews 73:79123.Google Scholar
Klingenberg, C. P., and Spence, J. R. 1993. Heterochrony and allometry: lessons from the water strider genus Limnoporus . Evolution 47:18341853.Google Scholar
Lefebvre, B., Eble, G. J., Navarro, N., and David, B. 2006. Diversification of atypical Paleozoic echinoderms: a quantitative survey of patterns of stylophoran disparity, diversity, and geography. Paleobiology 32:483510.Google Scholar
Lupia, R. 1999. Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record. Paleobiology 25:128.Google Scholar
McGowan, A. J. 2004. The effect of the Permo-Triassic bottleneck on Triassic ammonoid morphological evolution. Paleobiology 30:369395.2.0.CO;2>CrossRefGoogle Scholar
McKinney, M. L. 1988. Classifying heterochrony: allometry, size and time. Pp. 1734 in McKinney, M. L., ed. Heterochrony in evolution: a multidisciplinary approach. Plenum, New York.Google Scholar
McKinney, M. L., and McNamara, K. J. 1991. Heterochrony: the evolution of ontogeny. Plenum, New York.Google Scholar
McShea, D. W. 1998. Dynamics of diversification in state space. Pp. 91108 in McKinney, M. L. and Drake, J. A., eds. Biodiversity dynamics: turnover of populations, taxa, and communities. Columbia University Press, New York.Google Scholar
McShea, D. W. 2000. Trends, tools, and terminology. Paleobiology 26:330333.Google Scholar
Mitteroecker, P, and Gunz, P. 2009. Advances in morphometries. Evolutionary Biology 36:235247.Google Scholar
Mitteroecker, P., Gunz, P., and Bookstein, F. L. 2005. Heterochrony and geometric morphometries: a comparison of cranial growth in Pan paniscus versus Pan troglodites . Evolution and Development 7:244258.Google Scholar
Mosimann, J. E. 1970. Size allometry: size and shape variables with characterizations of the lognormal and generalized gamma distributions. Journal of the American Statistical Association 65:930945.Google Scholar
Navarro, N., Neige, P., and Marchand, D. 2005. Faunal invasions as a source of morphological constraints and innovations? The diversification of the early Cardioceratidae (Ammonoidea; Middle Jurassic). Paleobiology 31:98116.Google Scholar
Nee, S. 2006. Birth-death models in macroevolution. Annual Review of Ecology, Evolution, and Systematics 37:117.Google Scholar
Neige, P. 2003. Le débat macroévolutif: apports de la disparité morphologique. Comptes Rendus Palevol 2:423433.Google Scholar
Neige, P., Marchand, D., and Laurin, B. 1997. Heterochronic differentiation of sexual dimorphs among Jurassic ammonite species. Lethaia 30:145155.Google Scholar
Pie, M. R., and Weitz, J. S. 2005. A null model of morphospace occupation. American Naturalist 166:E1E13.CrossRefGoogle Scholar
Raup, D. M. 1977a. Probabilistic models in evolutionary paleobiology. American Scientist 65:5057.Google Scholar
Raup, D. M. 1977b. Stochastic models in evolutionary paleontology. Pp. 5978 in Hallam, A., ed. Patterns of evolution. Elsevier Scientific, Amsterdam.Google Scholar
Raup, D. M. 1985. Mathematical model of cladogenesis. Paleobiology 11:4252.Google Scholar
Raup, D. M. 1991. A kill curve for Phanerozoic marine species. Paleobiology 17:3748.Google Scholar
Raup, D. M., and Gould, S. J. 1974. Stochastic simulation and evolution of morphology—towards a nomothetic paleontology. Systematic Zoology 23:305322.Google Scholar
Raup, D. M., Gould, S. J., Schopf, T. J. M., and Simberloff, D. S. 1973. Stochastic models of phylogeny and the evolution of diversity. Journal of Geology 81:525542.Google Scholar
Sepkoski, J. J. Jr. 1991. Population biology models in macroevolution. In Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Short Courses in Paleontology 4:136156. Paleontological Society, Knoxville, Tenn. Google Scholar
Sepkoski, J. J. Jr., and Kendrick, D. C. 1993. Numerical experiments with model monophyletic and paraphyletic taxa. Paleobiology 19:168184.Google Scholar
Shea, B. T. 1981. Relative growth of the limbs and trunk in the African apes. American Journal of Physical Anthropology 56:179202.Google Scholar
Shea, B. T. 1983. Size and diet in the evolution of African ape craniodental form. Folia Primatologica 40:3268.Google Scholar
Shea, B. T. 1985a. Bivariate and multivariate growth allometry: statistical and biological considerations. Journal of Zoology 206:367390.Google Scholar
Shea, B. T. 1985b. Ontogenetic allometry and scaling: a discussion based on the growth and form of the skull in African apes. Pp. 175205 in Jungers, W. L., ed. Size and scaling in primate biology. Plenum, New York.Google Scholar
Shea, B. T. 1989. Heterochrony in human evolution: the case for neoteny reconsidered. Yearbook of Physical Anthropology 32:69101.Google Scholar
Shea, B. T. 1992. Developmental perspective on size change and allometry in evolution. Evolutionary Anthropology 1:125134.Google Scholar
Shea, B. T. 1996. Ontogenetic scaling and size correction in the comparative study of primate adaptations. Anthropologic 33:116.Google Scholar
Slatkin, M. 1981. A diffusion model of species selection. Paleobiology 7:421425.Google Scholar
Smith, L. H. 1998. Asymmetry of early Paleozoic trilobites. Lethaia 31:99112.CrossRefGoogle Scholar
Smith-Nielsen, K. 1984. Scaling: why is animal size so important? Cambridge University Press, Cambridge.Google Scholar
Solignac, M., Cariou, M.-L., and Wimitzki, M. 1990. Variability, specificity and evolution of growth gradients in the species complex Jaera albifrons (Isopoda, Asellota). Crustaceana 59:121145.Google Scholar
Strauss, R. 1987. On allometry and relative growth in evolutionary studies. Systematic Zoology 36:7275.Google Scholar
Teissier, G. 1934. Dysharmonies et discontinuities dans la croissance. Pp. 339 in Teissier, G., ed. Exposés de Biométrie et de Statistique biologique. Hermann, Paris.Google Scholar
Trammer, J. 2005. Maximum body size in a radiating clade as a function of time. Evolution 59:941947.Google Scholar
Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Paleontology 12:684709.Google Scholar
Valentine, J. W. 1980. Determinants of diversity in higher taxonomic categories. Paleobiology 6:444450.Google Scholar
Valentine, J. W., and Campbell, C. A. 1975. Genetic regulation and the fossil record. American Scientist 63:673680.Google Scholar
Wagner, P. J. 1995. Testing evolutionary constraint hypotheses with early Paleozoic gastropods. Paleobiology 21:248272.CrossRefGoogle Scholar
Wagner, P. J. 1997. Patterns of morphologic diversification among Rostroconchia. Paleobiology 23:115150.Google Scholar
Webster, M., and Zelditch, M. L. 2005. Evolutionary modifications of ontogeny: heterochrony and beyond. Paleobiology 31:354372.Google Scholar
Wills, M. A. 1998. Cambrian and recent disparity: the picture from priapulids. Paleobiology 24:177199.Google Scholar
Wills, M. A., Briggs, D. E. G., and Fortey, R. A. 1994. Disparity as an evolutionary index: a comparison of Cambrian and Recent arthropods. Paleobiology 20:93130.Google Scholar
Zelditch, M. L., and Fink, W. L. 1996. Heterochrony and heterotopy: stability and innovation in the evolution of form. Paleobiology 22:241254.Google Scholar
Zelditch, M. L., Sheets, H. D., and Fink, W. L. 2003. The ontogenetic dynamics of shape disparity. Paleobiology 29:139156.Google Scholar