Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-18T07:18:33.709Z Has data issue: false hasContentIssue false

Deep-sea foraging pathways: an analysis of randomness and resource exploitation

Published online by Cambridge University Press:  08 February 2016

Jennifer A. Kitchell*
Affiliation:
Department of Geology, University of Wisconsin-Madison, Madison, Wisconsin 53706

Abstract

The foraging paradigm of trace fossil theory has historically accorded random behavior to non-food-limited deposit-feeders and non-random behavior to food-limited feeders. A series of randomness measures derived from empirical modeling, simulation modeling, stochastic modeling and probability theory applied to foraging patterns observed in deep-sea bottom photographs from the Arctic and Antarctic yielded a behavioral continuum of increasing non-randomness. A linear regression of trace positions along the continuum to bathymetric data did not substantiate the optimal foraging efficiency-depth dependence model of trace fossil theory, except that all traces exhibited a greater optimization than that of simulated random foraging. It is hypothesized that optimization as evidenced by non-random foraging strategies represents maximization of the cost/benefit ratio of resource exploitation to risk of predation and that individual foraging patterns reflect an exploration response to the morphometry of a patchily distributed food resource. Differential predation and competition may account for the co-occurrence of random and non-random strategies within the same bathymetric zone.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ajne, B. 1968. A simple test for uniformity of a circular distribution. Biometrika. 55:343354.CrossRefGoogle Scholar
Anderson, S. 1974. Patterns of faunal evolution. Q. Rev. Biol. 49:311332.CrossRefGoogle ScholarPubMed
Banks, C. J. 1957. The behaviour of individual coccinellid larvae on plants. Brit. J. Anim. Behav. 5:1224.CrossRefGoogle Scholar
Batschelet, E. 1965. Statistical methods for the analysis of problems in animal orientation and certain biological rhythms. Am. Inst. Biol. Sci., Washington, D.C.Google Scholar
Beukema, J. J. 1968. Predation by the three-spined stickleback (Gasterosteus aculeatus): the influence of hunger and experience. Behaviour. 31:1126.CrossRefGoogle ScholarPubMed
Birks, H. J. B., Webb, T. III and Berti, A. A. 1975. Numerical analysis of surface pollen samples from central Canada: a comparison of methods. Rev. Palaeobot. Palynol. 20:133169.CrossRefGoogle Scholar
Bullington, W. E. 1925. A study of spiral movement in the ciliate infusoria. Arch. Protistenkd. 50:219274.Google Scholar
Charnov, E. L. 1973. Optimal Foraging: Some Theoretical Explorations. Ph.D. Thesis, Seattle, Univ. Wash.Google Scholar
Cody, M. L. 1971. Finch flocks in the Mohave Desert. Theor. Pop. Biol. 2:142158.CrossRefGoogle ScholarPubMed
Cody, M. L. 1974. Optimization in ecology. Science. 183:11561164.CrossRefGoogle ScholarPubMed
Covich, A. 1976. Analyzing shapes of foraging areas: some ecological and economic theories. Ann. Rev. Ecol. Syst. 7:235258.CrossRefGoogle Scholar
Crain, I. K. 1976. Statistical analysis of geotectonics. Pp. 315. In: Merriam, D. F., ed. Random Processes in Geology. Springer-Verlag; New York.CrossRefGoogle Scholar
Crimes, T. P. 1973. From limestone to distal turbidites: a facies and trace fossil analysis in the Zumaya flysch (Paleocene-Eocene), North Spain. Sedimentology 20:105131.CrossRefGoogle Scholar
Dacey, M. F. 1976. Summary of magnitude properties of topologically distinct channel networks and network patterns. Pp. 1638. In: Merriam, D. F., ed. Random Processes in Geology. Springer-Verlag; New York.CrossRefGoogle Scholar
Davis, J. C. 1973. Statistics and Data Analysis in Geology. 550 pp. John Wiley & Sons, Inc.; New York.Google Scholar
Dayton, P. K. and Hessler, R. R. 1972. Role of biological disturbance in maintaining diversity in the deep sea. Deep-Sea Res. 19:199208.Google Scholar
Dunkelberger, I. 1926. Spiral movement in mice. J. Comp. Psychol. 6:383389.CrossRefGoogle Scholar
Emlen, J. M. 1973. Ecology: an Evolutionary Approach. Addison-Wesley Publ. Co.; Reading, Mass.Google Scholar
Feller, W. 1968. An Introduction to Probability Theory and its Applications. 509 pp. John Wiley & Sons, Inc.; New York.Google Scholar
Flessa, K. W. and Levinton, J. S. 1975. Phanerozoic diversity patterns: tests for randomness. J. Geol. 83:239248.CrossRefGoogle Scholar
Gerlach, S. A. 1978. Food-chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivity. Oecologia. 33:5569.CrossRefGoogle ScholarPubMed
Gould, S. J. 1977. Eternal metaphors of palaeontology. Pp. 126. In: Hallam, A., ed. Patterns of Evolution. Elsevier Sci. Publ. Co.; Amsterdam.Google Scholar
Hantzschel, W. 1975. Trace fossils and problematica. In: Teichert, C., ed. Treatise on Invertebrate Paleontology. Part W., supplement 1, 269 pp. Geol. Soc. Am., New York and Univ. Kans. Press; Lawrence, Kansas.Google Scholar
Hessler, R. R. and Jumars, P. A. 1974. Abyssal community analysis from replicate box cores in the central North Pacific. Deep-Sea Res. 21:185209.Google Scholar
Hessler, R. R., Ingram, C. L., Yayanos, A. A., and Burnett, B. R. 1978. Scavenging amphipods from the floor of the Philippine Trench. Deep-Sea Res. 25:10291047.CrossRefGoogle Scholar
Hinga, K. R. 1978. Energetics of the deep-sea benthos. Am. Soc. Limnol. & Oceanogr., Inc., 41st Meeting, Victoria, B.C.1978 (abstr.).Google Scholar
Horn, H. S. 1975. Markovian processes of forest succession. Pp. 192211. In: Cody, M. L. and Diamond, J. M., eds. Ecology and Evolution of Communities. Belknap Press; Cambridge, Massachusetts.Google Scholar
Howarth, R. J. and Murray, J. W. 1969. The Foraminiferida of Christchurch Harbour, England: a reappraisal using multivariat techniques. J. Paleontol. 43:660675.Google Scholar
Imbrie, J. and Kipp, N. G. 1971. A new micropaleontological method for quantitative paleoclimatology: application to a late Pleistocene Caribbean core. Pp. 7181. In: Turekian, K., ed. The Late Cenozoic Glacial Ages. Yale Univ. Press; New Haven, Connecticut.Google Scholar
Jannasch, H. W. and Wirsen, C. O. 1973. Deep-sea microorganisms: in situ response to nutrient enrichment. Science. 180:641643.CrossRefGoogle ScholarPubMed
Jennings, H. S. 1901. On the significance of the spiral swimming in organisms. Am. Nat. 35:369378.CrossRefGoogle Scholar
Johnsen, P. 1978. Contributions on the Movements of Fish: I. Behavioral Mechanisms of Upstream Migration and Homestream Selection in Coho Salmon (Oncorhynchus kisutch). II. Winter Aggregation of Carp (Cyprinus carpio) as Revealed by Ultrasonic Trackings. Ph.D. Thesis, University of Wisconsin-Madison; Madison, Wisconsin.Google Scholar
Kennedy, J. S. 1977. Olfactory responses to distant plants and other sources. In: Shorey, H. H. and McKelvey, J. J. Jr., eds. Chemical Control of Insect Behavior Theory and Application. Wiley-Interscience; New York.Google Scholar
Kitchell, J. A., Kitchell, J. F., Clark, D. L., and Dangeard, L. 1978a. Deep-sea foraging behavior: its bathymetric potential in the fossil record. Science. 200:12891291.CrossRefGoogle ScholarPubMed
Kitchell, J. A., Kitchell, J. F., Johnson, G. L., and Hunkins, K. L. 1978b. Abyssal traces and megafauna: comparison of productivity, diversity and density in the Arctic and Antarctic. Paleobiology. 4:171180.CrossRefGoogle Scholar
Kleerekoper, H., Anderson, V. M., and Timms, A. M. 1973. Logarithmic spiral components in locomotor patterns of fish. Can. J. Zool. 51:397400.CrossRefGoogle Scholar
Kramer, E. 1975. Orientation of the male silk moth to the sex attractant Bombykol. Pp. 329335. In: Deuten, D. and Coghlon, J. D., eds. Olfaction and Taste. Academic Press; New York.CrossRefGoogle Scholar
Krebs, J. R., Ryan, J. C., and Charnov, E. L. 1974. Hunting by expectation or optimal foraging? A study of patch use by chickadees. Anim. Behav. 22:953964.CrossRefGoogle Scholar
Lee, F. S. 1894. A study of the sense of equilibrium in fishes (elasmobranchs). J. Physiol. 15:311348.CrossRefGoogle Scholar
Leviten, P. J. 1976. The foraging strategy of vermivorous conid gastropods. Ecol. Monogr. 46:157178.CrossRefGoogle Scholar
MacArthur, R. H. 1972. Geographical Ecology. 269 pp. Harper & Row; New York.Google Scholar
MacArthur, R. H. and Pianka, E. R. 1966. On optimal use of a patchy environment. Am. Nat. 100:603609.CrossRefGoogle Scholar
MacArthur, R. H. and Wilson, E. O. 1967. The Theory of Island Biogeography. 203 pp. Princeton Univ. Press; Princeton, New Jersey.Google Scholar
McFarland, D. J. 1977. Decision making in animals. Nature. 269:1521.CrossRefGoogle Scholar
Mann, K. H. 1976. Production on the bottom of the sea. Pp. 225250. In: Cushing, D. H. and Walsh, J. J., eds. The Ecology of the Seas. W. B. Saunders Co.; Philadelphia, Pennsylvania.Google Scholar
Miller, R. L. and Kahn, J. S. 1962. Statistical analysis in the geological sciences. 483 pp. John Wiley and Sons; New York.Google Scholar
Mitchell, B. 1963. Ecology of two carabid beetles, Bembidion lampros (Herbst) and Trechus quadristriatus (Schrank). I. Life cycles and feeding behavior. J. Anim. Ecol. 32:289299.CrossRefGoogle Scholar
Nageli, C. 1860. Ortsbewegungen der Pflanzenzellen und ihrer Theile. Beitr. Wiss. Bot. 2:59108.Google Scholar
Nei, M. 1975. Molecular population genetics and evolution. 288 pp. Elsevier; New York.Google ScholarPubMed
Nie, N. H., Hull, C. H., Jenkins, J. G., Steinbrenner, K., and Bent, D. H. 1975. Statistical Package for the Social Sciences. 675 pp. McGraw Hill Book Co., Inc.; New York.Google Scholar
Osman, R. W. and Whitlatch, R. B. 1978. Patterns of species diversity: fact or artifact? Paleobiology. 4:4154.CrossRefGoogle Scholar
Oster, G. and Heinrich, B. 1976. Why do bumblebees major? A mathematical model. Ecol. Monogr. 46:129133.CrossRefGoogle Scholar
Papentin, F. 1973. A Darwinian evolutionary system. III. Experiments on the evolution of feeding patterns. J. Theor. Biol. 39:431445.CrossRefGoogle Scholar
Preston, F. W. and Davis, J. C. 1976. Sedimentary porous materials as a realization of a stochastic process. Pp. 6386. In: Merriam, D. F., ed. Random Processes in Geology. Springer-Verlag; New York.CrossRefGoogle Scholar
Price, W. E. Jr. 1976. A random-walk simulation model of alluvial-fan deposition. Pp. 5562. In: Merriam, D. F., ed. Random Processes in Geology. Springer-Verlag; New York.CrossRefGoogle Scholar
Raup, D. M. 1977. Stochastic models in evolutionary paleontology. Pp. 5978. In: Hallam, A., ed. Patterns of Evolution. Elsevier Scientific Publ. Co.; Amsterdam.Google Scholar
Raup, D. M., Gould, S. J., Schopf, T. J. M., and Simberloff, D. S. 1973. Stochastic models of phytogeny and the evolution of diversity. J. Geol. 81:525542.CrossRefGoogle Scholar
Raup, D. M. and Gould, S. J. 1974. Stochastic simulation and evolution of morphology—towards a nomothetic paleontology. Syst. Zool. 23:305322.CrossRefGoogle Scholar
Rex, M. A. 1973. Deep-sea species diversity: decreased gastropod diversity in abyssal depths. Science. 181:10511053.CrossRefGoogle ScholarPubMed
Richerson, J. V. and Borden, J. H. 1972. Host finding of Coeloides brunneri (Hymenoptera: Braconidae). Can. Entomol. 104:12351250.CrossRefGoogle Scholar
Richter, R. 1924. Flachseebeobachtungen zur palaontologie und geologie. Senckenbergiana. 8:200224.Google Scholar
Riley, J. P. and Chester, R. 1976. Chemical Oceanography. Vol. 6. 414 pp. Academic Press; London.Google Scholar
Rowe, G. T. 1974. The effects of the benthic fauna on the physical properties of deep-sea sediments. Pp. 381399. In: Inderbitzen, A. L., ed. Deep-sea Sediments. Plenum Press; New York.CrossRefGoogle Scholar
Sachs, H. M., Webb, T. III, and Clark, D. R. 1977. Paleoecological transfer functions. Annu. Rev. Earth Planet. Sci. 5:159178.CrossRefGoogle Scholar
Sanders, H. L. 1968. Marine benthic diversity: a comparative study. Am. Nat. 102:243282.CrossRefGoogle Scholar
Schaeffer, A. A. 1920. On a new principle underlying movement in organisms. Anat. Rec. 17:342.Google Scholar
Schaeffer, A. A. 1926. Spiral movement in amebas. Anat. Rec. 34:115.Google Scholar
Schaeffer, A. A. 1927. Observations on spiral movement in amebas, Odontosyllus larvae and terns and on the influence of diluted seawater on the heartbeat of an ascidian larva. Carnegie Inst. Wash. Year B. 26:226228.Google Scholar
Schaeffer, A. A. 1928. Spiral movements in man. J. Morphol. Physiol. 45:293398.CrossRefGoogle Scholar
Schoener, T. W. 1971. Theory of feeding strategies. Annu. Rev. Ecol. System. 2:369404.CrossRefGoogle Scholar
Schoener, T. W. 1974. Some methods for calculating competition coefficients from resource-utilization spectra. Am. Nat. 108:332340.CrossRefGoogle ScholarPubMed
Schopf, T. J. M. 1977. Patterns of evolution: a summary and discussion. Pp. 547561. In: Hallam, A., ed. Patterns of Evolution. Elsevier Sci. Publ. Co.; Amsterdam.Google Scholar
Schwarzacher, W. 1976. Stratigraphic implications of random sedimentation. Pp. 96111. In: Merriam, D. F., ed. Random Processes in Geology. Springer-Verlag; New York.CrossRefGoogle Scholar
Seilacher, A. 1967a. Bathymetry of trace fossils. Mar. Geol. 5:413428.CrossRefGoogle Scholar
Seilacher, A. 1967b. Fossil behavior. Sci. Am. 217:7280.CrossRefGoogle Scholar
Seilacher, A. 1974. Flysch trace fossils: evolution of behavioural diversity in the deep-sea. N. Jb. Geol. Palaontol. Mh., 1974, H. 4:233245.Google Scholar
Seilacher, A. 1977. Evolution of trace fossil communities. Pp. 359376. In: Hallam, A., ed. Patterns of Evolution. Elsevier Sci. Publ. Co.; Amsterdam.Google Scholar
Shreve, R. L. 1966. Statistical law of stream numbers. J. Geol. 74:1737.CrossRefGoogle Scholar
Shreve, R. L. 1967. Infinite topologically random channel networks. J. Geol. 75:178186.CrossRefGoogle Scholar
Smith, J. N. M. 1974a. The food searching behaviour of two European thrushes. I: Description and analysis of search paths. Behaviour. 48:276302.CrossRefGoogle Scholar
Smith, J. N. M. 1974b. The food searching behaviour of two European thrushes. II: The adaptiveness of the search patterns. Behaviour. 49:161.CrossRefGoogle Scholar
Smith, K. L. Jr. and Teal, J. M. 1973. Deep-sea benthic community respiration: an in situ study at 1850 meters. Science. 179:282283.CrossRefGoogle Scholar
Stanley, S. M. 1975. A theory of evolution above the species level. Proc. Nat. Acad. Sci. 72:646650.CrossRefGoogle ScholarPubMed
Streeter, G. L. 1906. Some experiments on the developing ear vesicle of the tadpole with relation to equilibration. J. Exp. Zool. 3:543558.CrossRefGoogle Scholar
Valentine, J. W. 1973. Evolutionary Paleoecology of the Marine Biosphere. 511 pp. Prentice-Hall, Inc.; Englewood Cliffs, New Jersey.Google Scholar
Van Valen, L. 1973. A new evolutionary law. Evol. Theory 1:130.Google Scholar
von Buddenbrock, W. 1917. Die lichtkompassbewegungen bei den insekten, insbesondere den Schmeterlingsraupen. Heidelb. Akad. Wiss. Math.-Naturwiss. Kl. 8:126.Google Scholar
Webb, T. III and Clark, D. R. 1977. Calibrating micropaleontological data in climatic terms: a critical review. Ann. N. Y. Acad. Sci. 288:93118.CrossRefGoogle Scholar
Wickman, F. E. 1976. Markov models of repose-period patterns of volcanoes. Pp. 135161. In: Merriam, D. F., ed. Random Processes in Geology. Springer-Verlag; New York.CrossRefGoogle Scholar