Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T19:03:23.362Z Has data issue: false hasContentIssue false

Decline in extinction rates and scale invariance in the fossil record

Published online by Cambridge University Press:  08 February 2016

M. E. J. Newman
Affiliation:
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501. Email: [email protected]
Gunther J. Eble
Affiliation:
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, and Department of Paleobiology, Smithsonian Institution, MRC-121, Washington, D.C. 20560. Email: [email protected] Email: [email protected]

Abstract

We show that the decline in the extinction rate during the Phanerozoic can be accurately described by a logarithmic fit to the cumulative total extinction. This implies that extinction intensity is falling off approximately as the reciprocal of time. We demonstrate that this observation alone is sufficient to explain the existence of the proposed power-law forms in the distribution of the sizes of extinction events and in the power spectrum of Phanerozoic extinction, results that previously have been explained by appealing to self-organized critical theories of evolutionary dynamics.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bak, P. 1996. How nature works: the science of self-organized criticality. Copernicus, New York.CrossRefGoogle Scholar
Bak, P., and Paczuski, M. 1997. Mass extinction versus uniformitarianism in biological evolution. Pp. 341356in Flyvbjerg, H., Hertz, J., Jensen, M. H., Mouritsen, O. G., and Sneppen, K., eds. Physics of biological systems: from molecules to species. Springer, Berlin.CrossRefGoogle Scholar
Benton, M. J., ed. 1993. The fossil record 2. Chapman and Hall, London.Google Scholar
Benton, M. J., ed. 1995. Diversification and extinction in the history of life. Science 268:5258.CrossRefGoogle ScholarPubMed
Boyajian, G. F. 1986. Phanerozoic trends in background extinction: consequence of aging fauna. Geology 14:955958.2.0.CO;2>CrossRefGoogle Scholar
Flessa, K. W., and Jablonski, D. 1985. Declining Phanerozoic background extinction rates: effect of taxonomic structure? Nature 313:216218.CrossRefGoogle Scholar
Gilinsky, N. L. 1994. Volatility and the Phanerozoic decline of background extinction intensity. Paleobiology 20:445458.CrossRefGoogle Scholar
Gilinsky, N. L., and Bambach, R. K. 1987. Asymmetrical patterns of origination and extinction in higher taxa. Paleobiology 13:427445.CrossRefGoogle Scholar
Harland, W. B., Armstrong, R., Cox, V. A., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A geologic time scale 1989. Cambridge University Press, Cambridge.Google Scholar
Kauffman, S. A. 1993. Origins of order: self-organization and selection in evolution. Oxford University Press, Oxford.CrossRefGoogle Scholar
Kauffman, S. A., and Johnsen, S. 1991. Coevolution to the edge of chaos: coupled fitness landscapes, poised states, and coevolutionary avalanches. Journal of Theoretical Biology 149:467505.CrossRefGoogle Scholar
Kirchner, J. W., and Weil, A. 1998. No fractals in fossil extinction statistics. Nature 395:337338.CrossRefGoogle Scholar
Montroll, E. W., and Shlesinger, M. F. 1982. On 1/f noise and other distributions with long tails. Proceedings of the National Academy of Sciences USA 79:33803383.CrossRefGoogle ScholarPubMed
Newman, M. E. J. 1996. Self-organized criticality, evolution and the fossil extinction record. Proceedings of the Royal Society of London B 263:16051610.Google Scholar
Newman, M. E. J., and Eble, G. J. 1999. Power spectra of extinction in the fossil record. Proceedings of the Royal Society of London B 266:12671270.CrossRefGoogle Scholar
Pease, C. M. 1992. On the declining extinction and origination rates of fossil taxa. Paleobiology 18:8992.CrossRefGoogle Scholar
Raup, D. M. 1988. Testing the fossil record for evolutionary progress. Pp. 293317in Nitecki, M., ed. Evolutionary progress. University of Chicago Press, Chicago.Google Scholar
Raup, D. M. 1997. Review of P. Bak, “How Nature Works.” Complexity 2(6):3033.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr., 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246267.CrossRefGoogle Scholar
Sepkoski, J. J. Jr., 1991. A model of onshore-offshore change in faunal diversity. Paleobiology 17:5877.CrossRefGoogle Scholar
Sepkoski, J. J. Jr., 1992. A compendium of fossil marine animal families, 2d ed. Milwaukee Public Museum Contributions in Biology and Geology 83.Google ScholarPubMed
Sepkoski, J. J. Jr., 1993. Ten years in the library: new data confirm paleontological patterns. Paleobiology 19:4351.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr., 1996. Patterns of Phanerozoic extinction: a perspective from global databases. Pp. 3551in Walliser, O. H., ed. Global events and event stratigraphy. Springer, Berlin.CrossRefGoogle Scholar
Sibani, P., and Littlewood, P. B. 1993. Slow dynamics from noise adaptation. Physical Review Letters 71:14821485.CrossRefGoogle ScholarPubMed
Sibani, P., Schmidt, M. R., and Alstrøm, P. 1995. Fitness optimization and decay of extinction rate through biological evolution. Physical Review Letters 75:20552058.CrossRefGoogle ScholarPubMed
Sibani, P., Schmidt, M. R., and Alstrøm, P. 1998. Evolution and extinction dynamics in rugged fitness landscapes. International Journal of Modern Physics B 12361–391.CrossRefGoogle Scholar
Sneppen, K., and Newman, M. E. J. 1997. Coherent noise, scale invariance and intermittency in large systems. Physica D 110:209222.CrossRefGoogle Scholar
Sneppen, K., Bak, P., Flyvbjerg, H., and Jensen, M. H. 1995. Evolution as a self-organized critical phenomenon. Proceedings of the National Academy of Sciences USA 92:52095213.CrossRefGoogle ScholarPubMed
Sokal, R. R., and Rohlf, F. J. 1995. Biometry, 3d ed.W. H. Freeman, New York.Google Scholar
Solé, R. V., and Bascompte, J. 1996. Are critical phenomena relevant to large-scale evolution? Proceedings of the Royal Society of London B 263:161168.Google ScholarPubMed
Solé, R. V., Manrubia, S. C., Benton, M., and Bak, P. 1997. Self-similarity of extinction statistics in the fossil record. Nature 388:764767.CrossRefGoogle Scholar
Sornette, D., and Cont, R. 1997. Convergent multiplicative processes repelled from zero: power laws and truncated power laws. Journal de Physique I 7:431444.CrossRefGoogle Scholar
Van Valen, L. M. 1984. A resetting of Phanerozoic community evolution. Nature 307:5052.CrossRefGoogle Scholar