Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T09:36:51.056Z Has data issue: false hasContentIssue false

Decay and preservation of polychaetes: taphonomic thresholds in soft-bodied organisms

Published online by Cambridge University Press:  08 February 2016

Derek E. G. Briggs
Affiliation:
Department of Geology, University of Bristol, Queen's Road, Bristol BS8 1RJ, United Kingdom
Amanda J. Kear
Affiliation:
Department of Geology, University of Bristol, Queen's Road, Bristol BS8 1RJ, United Kingdom

Abstract

A series of experiments was carried out to investigate the nature and controls (oxygen, microbial populations, agitation) on the degradation of soft tissues. Decay was monitored in terms of morphological change, weight loss, and change in chemical composition in the polychaete Nereis virens. Polychaetes include a range of tissue types of differing chemical composition and preservation potential: muscle, cuticle, setae, and jaws. Regardless of conditions, all the muscle had broken down and fluid loss through the ruptured cuticle had reduced the carcass to two dimensions within 8 days at 20°C. In most cases some cuticle, in addition to the jaws and setae, remained after 30 days. Where oxygen was completely eliminated, the rate of decay of the more volatile issues was significantly reduced. The degree of both osmotic uptake of water by the carcass and changes in water pH differed depending on whether the system was open or closed to oxygen diffusion. Autolytic and chemical processes are not sufficient to fully degrade the carcass in the absence of bacteria. Where internal bacteria are present, the presence or absence of water column bacteria made little difference to decay rate. Initial degradation (in the first 3 days) affects mainly the lipid fraction and the collagen of the cuticle. Later decay reduces the nonsoluble protein and increases the relative proportion of refractory structural components (tanned chitin and collagen) to more than 95% by day 30. Thus, only the sclerotized tissues are likely to survive beyond 30 days in the absence of early diagenetic mineralization. The sequence of degradation predicted from the relative decay resistance of macromolecules in the sedimentary record (protein → carbohydrate → lipid) is not, therefore, a consistent indicator of the preservation potential of structural tissues which incorporate them.

The experiments reveal five stages in the decay of polychaete carcasses; whole/shriveled, flaccid, unsupported gut, cuticle sac, jaws and setae. All are represented in the fossil record. This allows an estimation of how far decay proceeded before it was halted by the fossilization process. The most complete preservations occur in the Cambrian where the Burgess Shale preserves evidence of muscle tissues. Traces of the gut and cuticle are more widely preserved, as at Mazon Creek, Grès à Voltzia, Solnhofen, and Hakel. Preservation varies within Konservat-Lagerstätten. The most common whole body preservation includes only the more recalcitrant tissues, jaws (where present) and setae, with an impression of the body outline. The stage of decay can be used as a taphonomic threshold, to provide an indication of how significantly the diversity of an exceptionally preserved biota is likely to have been reduced by taphonomic loss.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alessandrello, A. 1990. A revision of the annelids from the Eocene of Monte Bolca (Verona, Italy). Studi e richerche sui giacimenti terziari di Bolca, VI, Miscellanea Paleontologica, MCSN Verona 1990:175214.Google Scholar
Alessandrello, A., and Teruzzi, G.. 1986a. Palaeoaphrodite raetica, n. gen. n. sp., a new fossil polychaete annelid of the Rhaetic of Lombardy. Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale, Milano 127:321325.Google Scholar
Alessandrello, A., and Teruzzi, G.. 1986b. Eunicites phoenicius n. sp., a new fossil polychaete annelid of the Cenomanian of Hakel, Lebanon. Atti della Società Italiana di Scienze Naturali e del Museo Civico Storia Naturale, Milano 127:321–325.Google Scholar
Allison, P. A. 1986. Soft bodied animals in the fossil record: the role of decay in fragmentation during transport. Geology 14:979981.2.0.CO;2>CrossRefGoogle Scholar
Allison, P. A. 1988a. The role of anoxia in the decay and mineralization of proteinaceous macrofossils. Paleobiology 14:139154.CrossRefGoogle Scholar
Allison, P. A. 1988b. Konservat-Lagerstätten: cause and classification. Paleobiology 14:331344.CrossRefGoogle Scholar
Allison, P. A. 1990. Variation in rates of decay and disarticulation of Echinodermata: implications for the application of actualistic data. Palaios 5:432440.CrossRefGoogle Scholar
Allison, P. A. 1991. Taphonomy has come of age! Palaios 6:345–346.CrossRefGoogle Scholar
Allison, P. A., and Briggs, D.E.G.. 1991a. The taphonomy of soft-bodied animals. Pp. 120140in Donovan, S. K., ed. The processes of fossilization. Belhaven, London.Google Scholar
Allison, P. A., and Briggs, D.E.G.. 1991b. Taphonomy of nonmineralized tissues. Pp. 2570in Allison, P. A. and Briggs, D.E.G., eds. Taphonomy: releasing the data locked in the fossil record. Plenum, New York.CrossRefGoogle Scholar
Arduini, P., Pinna, G., and Teruzzi, G.. 1982. Melanoraphia maculata, n.g. n.sp., a new fossil polychaete of the Sinemurian of Osteno in Lombardy. Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale, Milano 123:462468.Google Scholar
Bartels, C., and Brassel, G.. 1990. Fossilien im Hunsrückschiefer-Dokumente des Meereslebens im Devon, Museum Idar-Oberstein, Idar-Oberstein.Google Scholar
Barthel, K. W., Swinburne, N.H.M., and Conway Morris, S.. 1990. Solnhofen, a study in Mesozoic palaeontology. Cambridge University Press, Cambridge.Google Scholar
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248254.CrossRefGoogle ScholarPubMed
Briggs, D.E.G. 1991. Extraordinary fossils. American Scientist 79:130141.Google Scholar
Briggs, D.E.G., and Clarkson, E.N.K.. 1987. The first tomopterid, a polychaete from the Carboniferous of Scotland. Lethaia 20:257262.CrossRefGoogle Scholar
Butterfield, N. J. 1990a. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology 16:272286.CrossRefGoogle Scholar
Butterfield, N. J. 1990b. A reassessment of the enigmatic Burgess Shale fossil Wiwaxia corrugat a (Matthew) and its relationship to the polychaete Canadia spinosa Walcott. Paleobiology 16:287303.CrossRefGoogle Scholar
Cameron, B. 1967. Fossilization of an ancient (Devonian) soft-bodied worm. Science (Washington, D.C.) 155:12461248.CrossRefGoogle ScholarPubMed
Colbath, G. K. 1986. Jaw mineralogy in eunicean polychaetes (Annelida). Micropaleontology 32:186189.CrossRefGoogle Scholar
Colbath, G. K. 1988. Taphonomy of Recent polychaete jaws from Florida and Belize. Micropaleontology 34:8389.CrossRefGoogle Scholar
Conway Morris, S. 1979. Middle Cambrian polychaetes from the Burgess Shale of British Columbia. Philosophical Transactions of the Royal Society of London B285:227274.Google Scholar
Conway Morris, S. 1985. Non-skeletalized lower invertebrate fossils: a review. Pp. 343359in Conway Morris, S., George, J. D., Gibson, R., and Platt, H. M., eds. The origins and relationships of lower invertebrates. Systematics Association Special Volume 28. Oxford University Press, Oxford.Google Scholar
Conway Morris, S. 1989. The persistence of Burgess Shale-type faunas: implications for the evolution of deeper-water faunas. Transactions of the Royal Society of Edinburgh: Earth Sciences 80:271283.CrossRefGoogle Scholar
Conway Morris, S. 1992. Burgess Shale-type faunas in the context of the “Cambrian explosion”: a review. Journal of the Geological Society of London 149:631636.CrossRefGoogle Scholar
Conway Morris, S., and Peel, J. S.. 1990. Articulated halkieriids from the Lower Cambrian of north Greenland. Nature (London) 345:802805.CrossRefGoogle Scholar
de Leeuw, J. W., Van Bergen, P. F., Van Aarssen, B.G.K., Gatellier, J.-P.L.A., Sinninghe Damsté, J. S., and Collinson, M. E.. 1991. Resistant biomacromolecules as major contributors to kerogen. Philosophical Transactions of the Royal Society of London B333:329337.Google Scholar
Dietl, G. von, and Mundlos, R.. 1972. Ökologie und biostratinomie von Ophiopinna elegans (Ophiuroidea) aus dem Unter-callovium von la Voulte (Südfrankreich). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 8:449464.Google Scholar
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F.. 1956. Colorimetric method for the determination of sugars and related substances. Analytical Chemistry 28:350356.CrossRefGoogle Scholar
Ehlers, E. 1868. Über eine fossile Eunicee aus Solnhofen (Eunicites avitus) nebst Bermerkung über fossile Würmer überhaupt. Zeitschrifte Wissenschaftlichen Zoologie 18:421443.Google Scholar
Ehlers, E. 1869. Über fossil Würmer aus dem litographischen Schiefer in Bayern. Palaeontographica 17:145175.Google Scholar
Emmerson, S., and Hedges, J. I.. 1988. Processes controlling the organic carbon content of open ocean sediments. Paleoceanography 3:621634.CrossRefGoogle Scholar
Fischer, J.-C., and Riou, B.. 1982. Les teuthoïdes (Cephalopoda, Dibranchiata) du Callovien inférieur de la Voulte-sur-Rhone (Ardèche, France). Annales de Paléontologie (Vert.-Invert.) 68:295325.Google Scholar
Gall, J.-C. 1971. Faunes et paysages du Grès à Voltzia du nord des Vosges. Essai paléoécologique sur le Buntsandstein Supérieur. Mémoires du Service de la Carte Géologique d'Alsace et de Lorraine 34.Google Scholar
Gall, J.-C., and Grauvogel, L.. 1967. Faune du Buntsandstein III. Quelques annelides du Grès à Voltzia des Vosges. Annales Paleontologie (Invert.) 53:105110.Google Scholar
Glaessner, M. F. 1979. Lower Cambrian Crustacea and annelid worms from Kangaroo Island, South Australia. Alcheringa 3:2131.CrossRefGoogle Scholar
Glaessner, M. F. 1984. The dawn of animal life: a biohistorical study. Cambridge University Press, Cambridge.Google Scholar
Henrichs, S. M., and Reeburgh, W. S.. 1987. Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiology Journal 5:191237.CrossRefGoogle Scholar
Heyler, D. 1986. Table ronde internationale du C.N.R.S. sur le gisement Stéphanien de Montceau-les-Mines. Conclusions. Bulletin Trimestriel de la Société d'Histoire Naturelle et des Amis du Museum d'Autun 117:161–173.Google Scholar
Heyler, D., and Poplin, C. M.. 1988. The fossils of Montceaules-Mines. Scientific American 256:104110.CrossRefGoogle Scholar
Hunt, S., and Nixon, M.. 1981. A comparative study of protein composition in the chitin-protein complexes of the beak, sucker disc, radula and oesophageal cuticle of cephalopods. Comparative Biochemistry and Physiology 68B:535546.Google Scholar
Jones, J. G. 1979. A guide to methods of estimating microbial numbers and biomass in fresh water. Freshwater Biological Association, Windermere, England.Google Scholar
Kidwell, S. M., and Baumiller, T.. 1990. Experimental disintegration of regular echinoids: roles of temperature, oxygen and decay thresholds. Paleobiology 16:247271.CrossRefGoogle Scholar
Kielan-Jaworowska, Z. 1966. Polychaete jaw apparatuses from the Ordovician and Silurian of Poland and a comparison with modern forms. Palaeontologia Polonica 16:1152.Google Scholar
Kozur, H. 1970. Zur Klassifikation und phylogenetischen Entwicklung der fossilen Phyllodocida und Eunicida (Polychaeta). Freiberger forschungshefte, Paläontologie C260:3581.Google Scholar
Kozur, H. 1971. Die Eunicida und Phyllodocida des Mesozoikums. Freiberger forschungshefte, Paläontologie C267:7389.Google Scholar
Logan, G. A., Collins, M. J., and Eglinton, G.. 1991. Preservation of organic biomolecules. Pp. 124in Allison, P. A. and Briggs, D.E.G., eds. Taphonomy: releasing the data locked in the fossil record. Plenum, New York.Google Scholar
Lyman, J., and Fleming, R. H.. 1940. Composition of sea water. Journal of Marine Research 3:134146.Google Scholar
Nedin, C. 1992. Paleontology and paleoecology of the Lower Cambrian Emu Bay Shale Lagerstätten, Kangaroo Island, South Australia. Fifth North American Paleontological Convention, Chicago, 1992. Abstracts and Program:221.Google Scholar
Pacaud, G., Rolfe, W.D.I., Schram, F.R., Secretan, S., and Sotty, D.. 1981. Quelques invertébrés nouveaux du Stéphanien de Montceau-les-Mines. Bulletin Trimestriel de la Société d'Histoire Naturelle et des Amis due Muséum d'Autun 97:3743.Google Scholar
Parkes, R. J., and Buckingham, W. J.. 1986. The flow of organic carbon through aerobic respiration and sulfate reduction in inshore marine sediments. Pages 617624in Megasar, F. and Gantar, M., eds. Proceedings 4th International Symposium on Microbial Ecology. Slovene Society for Microbiology, Ljubljana, Yugoslavia.Google Scholar
Parkes, R. J., and Senior, E.. 1988. Multistage chemostats and other models for studying anoxic ecosystems. Pp. 5171in Wimpenny, J. W. T., ed. Handbook of laboratory model systems for microbial ecosystems, Vol. 1. CRC Press, Boca Raton, Fla.Google Scholar
Petersen, S. O., Henriksen, K., Blackburn, T. H., and King, G. M.. 1991. A comparison of phospholipid and chloroform fumigation analysis for biomass in the soil: potentials and limitations. Microbiology and Ecology 85:257268.CrossRefGoogle Scholar
Pickerill, R. K., and Forbes, W. H.. 1978. A trace fossil preserving its producer (Trentonia shegiriana) from the Trenton Limestone of the Quebec City area. Canadian Journal of Earth Sciences 15:659664.CrossRefGoogle Scholar
Plotnick, R. E. 1986. Taphonomy of a modern shrimp: implications for the arthropod fossil record. Palaios 1:286293.CrossRefGoogle Scholar
Purschke, G. 1988. Pharynx. Pp. 177198in Westheide, W. and Hermans, C. O., eds. The Ultrastructure of Polychaeta. G. Fischer, Stuttgart.Google Scholar
Reimers, C. E. 1989. Control of benthic fluxes by particulate supply. Pp. 217233in Berger, W. H., Smetacek, V. S., and Wefer, G., eds. Productivity of the ocean: present and past. Wiley, New York.Google Scholar
Robison, R. A. 1969. Annelids from the Middle Cambrian Spence Shale of Utah. Journal of Paleontology 43:11691173.Google Scholar
Robison, R. A. 1991. Middle Cambrian biotic diversity: examples from four Utah Lagerstätten. Pp. 7793in Simonetta, A. M. and Conway Morris, S., eds. The early evolution of Metazoa and the significance of problematic taxa. Cambridge University Press, Cambridge.Google Scholar
Roger, J. 1946. Les invertébrés des couches a Poissons du Crétacé supérieur du Liban. Mémoires Société Géologique France N.S. 51:6870.Google Scholar
Rolfe, W.D.I., Schram, F. R., Pacaud, G., Sotty, D., and Secretan, S.. 1982. A remarkable Stephanian biota from Montceau-les-Mines, France. Journal of Paleontology 56:426428.Google Scholar
Schäfer, W. 1972. Ecology and palaeoecology of marine environments (Oertel, I., translator; Craig, G. Y., ed.). University of Chicago Press, Chicago.Google Scholar
Schram, F. R. 1979. Worms of the Mississippian Bear Gulch Limestone of central Montana, U.S.A. Transactions of the San Diego Society of Natural History 19:107120.Google Scholar
Specht, A. 1988. Chaetae. Pp. 4560in Westheide, W. and Hermans, C. O., eds. The ultrastructure of Polychaeta. G. Fischer, Stuttgart.Google Scholar
Storch, V. 1988. Integument. Pp. 1336in Westheide, W. and Hermans, C. O., eds. The ultrastructure of Polychaeta. G. Fischer, Stuttgart.Google Scholar
Stürmer, W. 1980. Tafel I–XVI zu: Röntgenstrahlen erforschen die Urzeit. Kleine Senckenberg-Reihe 11:4071.Google Scholar
Szaniawski, H. 1974. Some Mesozoic scolecodonts congeneric with recent forms. Acta Palaeontologia Polonica 19:179199.Google Scholar
Tegelaar, E. W., de Leeuw, J. W., Derenne, S., and Largeau, C.. 1989. A reappraisal of kerogen formation. Geochimica et Cosmochimica Acta 53:31033106.CrossRefGoogle Scholar
Tegelaar, E. W., Kerp, H., Visscher, H., Schenk, P. A., and de Leeuw, J. W.. 1991. Bias of paleobotanical record as a consequence of variations in the chemical composition of higher vascular plant cuticles. Paleobiology 17:133144.CrossRefGoogle Scholar
Thompson, I. 1979a. Annelida. Pp. 3945in Fairbridge, R. W. and Jablonski, D., eds. The encyclopedia of paleontology. Dowden, Hutchinson and Ross, Stroudsberg, Pa.CrossRefGoogle Scholar
Thompson, I. 1979b. Errant polychaetes (Annelida) from the Pennsylvanian Essex fauna of northern Illinois. Palaeontographica, Abteilung A 163:169199.Google Scholar
Thompson, I., and Johnson, R. G.. 1977. New fossil polychaete from Essex, Illinois. Fieldiana (Geology) 33:471487.Google Scholar
Voss-Foucart, M. F., Fonze-Vignaux, M. T., and Jeuniaux, C.. 1973. Systematic characters of some polychaetes (Annelida) at the level of the chemical composition of the jaws. Biochemical Systematics 1:119122.CrossRefGoogle Scholar