Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T17:09:58.112Z Has data issue: false hasContentIssue false

Daughter of time

Published online by Cambridge University Press:  08 April 2016

Andrew H. Knoll*
Affiliation:
Botanical Museum, Harvard University, Cambridge, Massachusetts 02138

Extract

Truth, goes an old proverb, is the daughter of time. Fifty years ago, G. G. Simpson (1944) brought paleontology into the Neodarwinian fold, arguing that evolutionary tempo can be documented in the geological record and used to inform debate about evolutionary mode. Today, increasingly sophisticated paleontological investigations of rate—be it diversification, extinction, migration, morphological change, or divergence in macromolecular sequence—require calibration of the geological time scale with a precision far greater than Simpson could have anticipated. Expanding research on the relationships between environmental history and evolution also requires unprecedented resolution in correlation and geochronometry.

Type
Matters of the Record
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bengtson, S. 1994. The advent of animal skeletons. pp. 412425in Bengtson, S., ed. Early life on Earth. Columbia University Press, New York.Google Scholar
Bowring, S. A., Grotzinger, J. P., Isachsen, C. E., Knoll, A. H., Pelechaty, S. M., and Kolosov, P. 1993. Calibrating rates of Early Cambrian evolution. Science 261:12931298.CrossRefGoogle ScholarPubMed
Brasier, M. D., Rozanov, A. Y., Zhuravlev, A. Y., Corfield, R. M., and Derry, L. A. 1994. A carbon isotope reference scale for the Lower Cambrian Series in Siberia and its significance. Geological Magazine 131:767783.CrossRefGoogle Scholar
Briggs, D. E. G., and Fortey, R. A. 1989. The early radiation and relationships of the major arthropod groups. Science 246:241243.CrossRefGoogle ScholarPubMed
Buss, L. W., and Seilacher, A. 1994. The Phylum Vendobionta: a sister group of the Eumetazoa? Paleobiology 20:14.Google Scholar
Budd, G. 1993. A Cambrian gilled lobopod from Greenland. Nature 364:709711.CrossRefGoogle Scholar
Butterfield, N. J. 1994. Burgess Shale-type fossils from a Lower Cambrian shallow-shelf sequence in northwestern Canada. Nature 369:477479.Google Scholar
Carroll, S. B. 1995. Homeotic genes and the evolution of arthropods and chordates. Nature 376:479485.Google Scholar
Jen-yuan, Chen, Ramsköld, L., and Gui-qing, Zhou. 1994. Evidence for monophyly and arthropod affinity of Cambrian giant predators. Science 264:13041308.Google Scholar
Compston, W., Williams, I. S., Kirschvink, J. L., Zichao, Zhang, and Guogan, Ma. 1992. Zircon U-Pb ages for the Early Cambrian time scale. Journal of the Geological Society, London 149:171184.CrossRefGoogle Scholar
Conway Morris, S. 1993a. The fossil record and the early evolution of the Metazoa. Nature 361:219225.CrossRefGoogle Scholar
Conway Morris, S. 1993b. Ediacaran-like fossils in Cambrian Burgess Shale-type faunas of North America. Palaeontology 36:593635.Google Scholar
Cooper, J. A., Jenkins, R. J. F., Compston, W., and Williams, I. S. 1992. Ion-probe zircon dating of mid-early Cambrian tuff in South Australia. Journal of the Geological Society, London 149:185192.Google Scholar
Crimes, T. P. 1994. The period of early evolutionary failure and the dawn of evolutionary success: the record of biotic changes across the Precambrian-Cambrian boundary. pp. 105133in Donovan, S. K., ed. The Paleobiology of trace fossils. Wiley, New York.Google Scholar
Derry, L. A., Kaufman, A. J., and Jacobsen, S. B. 1992. Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes. Geochimica et Cosmochimica Acta 56:13171329.Google Scholar
Erwin, D. H. 1993. The origin of metazoan development: a palaeobiological perspective. Biological Journal of the Linnean Society 50:255274.Google Scholar
Germs, J. G. B. 1972. New shelly fossils from the Nama Group, South West Africa. American Journal of Science 272:752761.Google Scholar
Gould, S. J. 1989. Wonderful Life. Norton, New York.Google Scholar
Grant, S. 1990. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. American Journal of Science 290A:261294.Google Scholar
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kaufman, A. J. (1995) Biostratigraphic and geochronologic constraints on early animal evolution. Science 270:598604.Google Scholar
Hofmann, H. J., Narbonne, G. M., and Aitken, J. D. 1990. Ediacaran remains from intertillite beds in northwestern Canada. Geology 18:11991202.Google Scholar
Hunter, C. P., and Kenyon, C. 1995. Specification of anteroposterior cell fates in Caenorhabditis elegans by Drosophila Hox proteins. Nature 377:229232.Google Scholar
Isachsen, C. E., Bowring, S. A., Landing, E., and Samson, S. D. 1994. New constraint on the division of Cambrian time. Geology 22:496498.Google Scholar
Kaufman, A. J., and Knoll, A. H. 1995. Neoproterozoic variations in the carbon isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Research 73:2749.Google Scholar
Knoll, A. H. 1992. Biological and biogeochemical preludes to the Ediacaran radiation. pp. 5384In Lipps, J. H. and Signor, P. W., eds. Origin and early evolution of the Metazoa. Plenum, New York.CrossRefGoogle Scholar
Knoll, A. H. 1994. Proterozoic and Early Cambrian protists: evidence for accelerating evolutionary tempo. Proceedings of the National Academy of Sciences USA 91:67436750.Google Scholar
Knoll, A. H., Fairchild, I. J., and Swett, K. 1993. Calcified microbes in Neoproterozoic carbonates: implications for our understanding of the Proterozoic/Cambrian transition. Palaios 8:512525.Google Scholar
Knoll, A. H., Kaufman, A. J., Semikhatov, M. A., Grotzinger, J. P., and Adams, W. 1995. Sizing up the sub-Tommotian unconformity in Siberia. Geology 23:11391143.Google Scholar
Krogh, T. E., Strong, D. F., O'Brien, S. J., and Papezik, V. 1988. Precise U-Pb zircon dates from the Avalon Terrane in Newfoundland. Canadian Journal of Earth Sciences 25:442453.Google Scholar
Logan, G. A., Hayes, J. M., Hieshima, G. B., and Summons, R. E. 1995. Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376:5356.CrossRefGoogle ScholarPubMed
Maliva, R. G., Knoll, A. H., and Siever, R. 1989. Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle. Palaios 4:519532.Google Scholar
McCaffrey, M. A., Moldowan, J. M., Lipton, P. A., Summons, R. E., Peters, K. E., Jeganathan, A., and Watt, D. S. 1994. Palaeoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic age petroleum and bitumen. Geochimica et Cosmochimica Acta 58:529532.Google Scholar
Miklos, G. L. G., Campbell, K. S. W., and Kankel, D. R. 1994. The rapid emergence of bio-electronic novelty, neuronal architectures and organismal preformance. pp. 269293In Greenspan, R. J. and Kyriacou, C. P., eds. Flexibility and constraint in behavioral systems. Springer, Heidelberg.Google Scholar
Moczydlowska, M. 1991. Acritarch biostratigraphy of the Lower Cambrian and the Precambrian–Cambrian boundary in southeastern Poland. Fossils and Strata 29:1127.Google Scholar
Narbonne, G. M., Kaufman, A. J., and Knoll, A. H. 1994. Integrated chemostratigraphy and biostratigraphy of the upper Windermere Supergroup (Neoproterozoic), Mackenzie Mountains, northwestern Canada. Geological Society of America Bulletin 106:12811292.Google Scholar
Raff, R. A., Marshall, C. R., and Turbeville, J. M. 1994. Using DNA sequences to unravel the Cambrian radiation of the animal phyla. Annual Review of Ecology and Systematics 25:351375.Google Scholar
Runnegar, B. 1995. Vendobionta or Metazoa? Developments in the understanding of the Ediacaran “fauna.” Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 195:305318.CrossRefGoogle Scholar
Seilacher, A. 1989. Vendozoa: organismic construction in the Precambrian biosphere. Lethaia 22:229239.Google Scholar
Seilacher, A. 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society, London 149:607613.CrossRefGoogle Scholar
Sepkoski, J. J. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis marine orders. Paleobiology 4:223251.Google Scholar
Simpson, G. G. 1944. Tempo and mode in evolution. Columbia University Press, New York.Google Scholar
Stanley, S. M. 1973. An ecological theory for the sudden origin of multicellular life in the late Precambrian. Proceedings of the National Academy of Sciences 70:14861489.CrossRefGoogle ScholarPubMed
Valentine, J. W. 1994. The Cambrian explosion. pp. 401411in Bengtson, S., ed. Early life on Earth. Columbia University Press, New York.Google Scholar
Vidal, G., Moczydlowska, M., and Rudavskaya, V. R. 1995. Constraints on the Early Cambrian radiation and correlation of the Tommotian and Nemakit-Daldynian regional stages of eastern Siberia. Journal of the Geological Society, London 152:499510.Google Scholar
Wodehouse, P. G. 1981. Life at Blandings. Penguin, London.Google Scholar
Zartman, R. E., and Naylor, R. S. 1988. Structural implications of some radiometric ages of igneous rocks in southeastern New England. Geological Society of America Bulletin 95:522539.Google Scholar