Published online by Cambridge University Press: 08 February 2016
The taxonomic diversity of crocodilians (Crocodylia) through the last 100 million years shows a general decline in the number of genera and species to the present day. But this masks a more complex pattern. This is investigated here using a comprehensive database of fossil crocodilians that provides the opportunity to examine spatial and temporal trends, the influence of sampling, and the role of climate in regulating biodiversity.
Crown-group crocodilians, comprising the extant families Alligatoridae, Crocodylidae, and Gavialidae, show the following trend: an initial exponential diversification through the Late Cretaceous and Paleocene that is restricted to the Northern Hemisphere until after the K/T boundary; relatively constant diversity from the Paleocene into the middle Eocene that may be an artifact of sampling, which might mask an actual decline in numbers; low diversity during the late Eocene and Oligocene; a second exponential diversification during the Miocene and leveling off in the late Miocene and Pliocene; and a precipitous drop in the Pleistocene and Recent. The coincidence of drops in diversity with global cooling is suggestive of a causal link—during the initial glaciation of Antarctica in the Eocene and Oligocene and the Northern Hemisphere glaciation at the end of the Pliocene. However, matters are complicated in the Northern Hemisphere by the climatic effects of regional uplift.
Although the global trend of diversification is unperturbed at the K/T boundary, this is largely due to the exceptionally high rate of origination in the early Paleocene. Nonetheless, the survival of such a demonstrably climate-sensitive group strongly suggests that a climatic explanation for the K/T mass extinctions, especially the demise of the dinosaurs, must be reconsidered.