Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T05:43:50.721Z Has data issue: false hasContentIssue false

Cretaceous foraminifera and the evolutionary history of planktic photosymbiosis

Published online by Cambridge University Press:  08 February 2016

Steven D'Hondt
Affiliation:
University of Rhode Island, Graduate School of Oceanography, Narragansett, Rhode Island 02882. E-mail: [email protected]
James C. Zachos
Affiliation:
Earth and Marine Sciences, University of California, Santa Cruz, California 95064. E-mail: [email protected]

Abstract

Ecotypic correlations between stable isotopic signals and skeletal size indicate that some Late Cretaceous serial planktic foraminifera were strongly photosymbiotic. In contrast, coeval trochospiral planktic foraminifera do not exhibit the isotope/size signatures that typify strongly photosymbiotic species. Comparison to Cenozoic taxa demonstrates that photosymbiosis has recurred throughout planktic foraminiferal history and has evolved independently in superfamilies characterized by very different gross skeletal morphologies. The historical contingency of that evolution is illustrated by the consequences of the Cretaceous/Paleogene mass extinction, which terminated the Cretaceous lineages of photosymbiotic planktic foraminifera but did not permanently extinguish photosymbiont reliance by planktic foraminifera.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, O. R. 1983. Radiolaria. Springer, New York.CrossRefGoogle Scholar
Bijma, J., Hemleben, C., Oberhänsli, H., and Spindler, M. 1992. The effect of increased water fertility on tropical spinose foraminifers in laboratory cultures. Journal of Foraminiferal Research 22:242256.CrossRefGoogle Scholar
Boersma, A., Shackleton, N. J., Hall, M., and Given, Q. 1979. Carbon and oxygen isotope variations at DSDP Site 384 (North Atlantic) and some paleotemperatures and carbon isotope variations in the Atlantic Ocean. In Tucholke, B. E. and Vogt, P. R., eds. Initial reports of the Deep Sea Drilling Project 43:695717.Google Scholar
Caron, D. A., Michaels, A. F., Swanberg, N. R., and Howse, F. A. 1995. Primary productivity by symbiont-bearing planktonic sarcodines (Acantharia, Radiolaria, Foraminifera) in surface waters near Bermuda. Journal of Plankton Research 17:103129.Google Scholar
Corfield, R. M., and Cartlidge, J. E. 1991. Isotopic evidence for the depth stratification of fossil and recent Globigerinina: a review. Historical Biology 5:3763.Google Scholar
D'Hondt, S. 1991. Phylogenetic and stratigraphic analysis of earliest Paleocene triserial and biserial planktonic foraminifera. Journal of Foraminiferal Research 21:168181.CrossRefGoogle Scholar
D'Hondt, S., and Arthur, M. A. 1995. Interspecies variation in stable isotopic signals of Maastrichtian planktonic foraminifera. Paleoceanography 10:123135.CrossRefGoogle Scholar
D'Hondt, S., and Zachos, J. C. 1995. 75 million years of photosymbiosis in planktic foraminifera. Geological Society of America Abstracts with Programs 27:A244.Google Scholar
D'Hondt, S., Zachos, J. C., and Schultz, G. 1994. Stable isotopes and photosymbiosis in late Paleocene planktic foraminifera. Paleobiology 20:391406.CrossRefGoogle Scholar
D'Hondt, S., Herbert, T. D., King, J., and Gibson, C. 1996. Planktic foraminifera, asteroids, and marine production: death and recovery at the Cretaceous-Tertiary boundary. In Ryder, G. T., Fastovsky, D. E., and Gartner, S., eds. New developments regarding the K/T event and other catastrophes in earth history. Geological Society of America Special Paper 307:303317.Google Scholar
Fairbanks, R. G., Wiebe, P. H., and , A. W. H. 1980. Vertical distribution and isotopic composition of living planktonic foraminifera in the western North Atlantic. Science 207:6163.CrossRefGoogle ScholarPubMed
Fairbanks, R. G., Sverdlove, M., Free, R., Wiebe, P. H., and , A. W. H. 1982. Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin. Nature 298:841844.CrossRefGoogle Scholar
Gastrich, M. D. 1987. Ultrastructure of a new intracellular symbiotic alga found within planktonic foraminifera. Journal of Phycology 23:623632.CrossRefGoogle Scholar
Hart, M. B. 1980. A water-depth model for the evolution of the planktonic Foraminiferida. Nature 286:252254.CrossRefGoogle Scholar
Hemleben, C., Spindler, M. and Anderson, O. R. 1989. Modern planktonic foraminifera. Springer, New York.Google Scholar
Houston, R. M., and Huber, B. T. 1997. Evidence of photosymbiosis in fossil taxa? Ontogenetic stable isotope analysis of Late Cretaceous planktonic foraminifera. Geological Society of America Abstracts with Programs 29:A160.Google Scholar
Houston, R. M.In press. Evidence of photosymbiosis in fossil taxa? Ontogenetic stable isotopic trends in some Late Cretaceous planktonic foraminifera. Marine Micropaleontology.Google Scholar
Huber, B. T. 1990. Maastrichtian planktonic foraminifer biostratigraphy of the Maud Rise (Weddell Sea, Antarctica): ODP leg 113 holes 689B and 690C. In Barker, P. F. and Kennett, J. P., eds. Scientific results of the Ocean Drilling Program 113:489513.Google Scholar
Huber, B. T. 1992. Paleobiogeography of Campanian-Maastrichtian foraminifera in the high southern latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology 92:325360.CrossRefGoogle Scholar
Huber, B. T. 1996. Evidence for planktonic foraminifer reworking vs. survivorship across the Cretaceous-Tertiary boundary at high latitudes. In Ryder, G. T., Fastovsky, D. E., and Gartner, S., eds. New developments regarding the K/T event and other catastrophes in earth history. Geological Society of America Special Paper 307:319334.Google Scholar
Jørgenson, B. B., Erez, J., Revsbech, N. P., and Cohen, Y. P. 1985. Symbiotic photosynthesis in the planktonic foraminifera, Globigerinoides sacculifer (Brady), studied with microelectrodes. Limnology and Oceanography 30:12531267.CrossRefGoogle Scholar
Kelly, D. C., Arnold, A. J., and Parker, W. C. 1996. Paedomorphosis and the origin of the Paleogene planktonic foraminiferal genus Morozovella. Paleobiology 22:266281.CrossRefGoogle Scholar
Leckie, R.M. 1987. Paleoecology of mid-Cretaceous planktonic foraminifera: a comparison of open ocean and epicontinental sea assemblages. Micropaleontology 33:164176.CrossRefGoogle Scholar
Liu, C., and Olsson, R.K. 1992. Evolutionary radiation of microperforate planktonic foraminifera following the K/T mass extinction event. Journal of Foraminiferal Research 22:328346.CrossRefGoogle Scholar
Loeblich, A. R. Jr., and Tappan, H. 1988. Foraminiferal genera and their classification. Van Nostrand Reinhold, New York.CrossRefGoogle Scholar
Lohmann, G. P. 1995. A model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution. Paleoceanography 10:445458.CrossRefGoogle Scholar
McConnaughy, T. 1989. 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochimica et Cosmochimica Acta 53:151162.CrossRefGoogle Scholar
Michaels, A. F. 1988. Vertical distribution and abundance of Acantharia and their symbionts. Marine Biology 97:559569.CrossRefGoogle Scholar
Michaels, A. F. 1991. Acantharian abundance and symbiont productivity at the VERTEX seasonal station. Journal of Plankton Research 13:399418.CrossRefGoogle Scholar
Nederbragt, A. J. 1989. Maastrichtian Heterohelicidae (planktonic foraminifera) from the North West Atlantic. Journal of Micropaleontology 8:183206.CrossRefGoogle Scholar
Nederbragt, A. J. 1991. Late Cretaceous biostratigraphy and development of Heterohelicidae (planktic foraminifera). Micropaleontology 37:329372.CrossRefGoogle Scholar
Norris, R. D. 1991. Parallel evolution in the keel structure of planktonic foraminifera. Journal of Foraminiferal Research 21:319331.CrossRefGoogle Scholar
Norris, R. D. 1996a. Symbiosis as an evolutionary innovation in the radiation of Paleocene planktic foraminifera. Paleobiology 22:461–80.CrossRefGoogle Scholar
Norris, R. D. 1996b. Macroevolutionary origins of photosymbiosis in planktic foraminifera. Geological Society of America Abstracts with Programs 28:A484.Google Scholar
Olsson, R. K. 1982. Cenozoic planktonic foraminifera: a paleobiogeographic summary. In Broadhead, T. W., ed. Foraminifera notes for a short course (organized by M. A. Buzas and B. K. Sen Gupta). University of Tennessee Department of Geological Sciences Studies in Geology 6:127147.Google Scholar
Olsson, R. K., and Liu, C. 1993. Controversies on the placement of the Cretaceous-Paleogene boundary and the K/P mass extinction of planktonic foraminifera. Palaios 8:127139.CrossRefGoogle Scholar
Olsson, R. K., C. Hemleben, W. A. Berggren, B. T. Huber, and members of the Paleogene Planktonic Foraminifera Working Group. In press. Atlas of Paleocene planktonic foraminifera. Smithsonian Contributions to Paleobiology. Washington, D.C.Google Scholar
Pearson, P., Shackleton, N., and Hall, M. 1993. Stable isotope paleoecology of middle Eocene planktonic foraminifera and multi-species isotope stratigraphy, DSDP site 523, South Atlantic. Journal of Foraminiferal Research 23:123140.CrossRefGoogle Scholar
Ravelo, A. C., and Fairbanks, R. G. 1995. Carbon isotopic fractionation in multiple species of planktonic foraminifera from core-tops in the tropical Atlantic. Journal of Foraminiferal Research 25:5374.CrossRefGoogle Scholar
Robaszynski, F., Caron, M., Gonzalez Donoso, J. M., Wonders, A. A. H. et al. 1983–1984. Revue de Micropaléontologie 26:145.Google Scholar
Smit, J. 1982. Extinction and evolution of planktonic foraminifera at the Cretaceous/Tertiary boundary after a major impact. In Silver, L.T. and Schultz, P. H., eds. Geological implications of impacts of large asteroids and comets on the earth. Geological Society of America Special Paper 190:329–35.CrossRefGoogle Scholar
Smith, C. C., and Pessagno, E. A. 1973. Planktonic foraminifera and stratigraphy of the Corsicana Formation (Maestrichtian) north-central Texas. Cushman Foundation Special Publication 12. Washington, D.C.Google Scholar
Spero, H. J., and DeNiro, M. J. 1987. The influence of symbiont photosynthesis on the δ18O and δ13C values of planktonic foraminiferal shell calcite. Symbiosis 4:213228.Google Scholar
Spero, H. J., and Lea, D. W. 1993. Intraspecific stable isotope variability in the planktic foraminifer Globigerinoides sacculifer: results from laboratory experiments. Marine Micropaleontology 22:193232.CrossRefGoogle Scholar
Spero, H. J. 1996. Experimental determination of stable isotopic variability in Globigerina bulloides: implications for paleoceanographic reconstructions. Marine Micropaleontology 28:231246.CrossRefGoogle Scholar
Spero, H. J., and Parker, S. L. 1985. Photosynthesis in the symbiotic planktonic foraminifer Orbulina universa, and its potential contribution to oceanic primary productivity. Journal of Foraminiferal Research 15:273281.CrossRefGoogle Scholar
Stott, L. D., and Kennett, J. P. 1990. The paleoceanographic and paleoclimatic signature of the Cretaceous/Tertiary boundary in the Antarctic: stable isotopic results from ODP leg 113. In Barker, P. F. and Kennett, J. P., eds. Scientific results of the Ocean Drilling Program 113:829848.Google Scholar
Zachos, J. C., Aubry, M.-P., Berggren, W. A., Ehrendorfer, T., and Heider, F. 1992. Magnetobiochemostratigraphy across the Cretaceous/Paleogene boundary at ODP Site 750A, Southern Kerguelen Plateau. In Wise, S. W. Jr. and Schlich, R., eds. Scientific results of the Ocean Drilling Program 120, Part 2:961977.Google Scholar
Zachos, J. C., Quinn, T. M., and Salamy, K. 1996. Earliest Oligocene climate transition: constraints from high resolution (104 yr) deep-sea foraminiferal δ18O and δ13C time series. Paleoceanography 11:251266.CrossRefGoogle Scholar