Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T18:15:06.807Z Has data issue: false hasContentIssue false

Convergence on dental simplification in the evolution of whales

Published online by Cambridge University Press:  28 May 2018

Carlos Mauricio Peredo
Affiliation:
Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia 22030, U.S.A.; andDepartment of Paleobiology, National Museum of Natural History, Washington, D.C. 20560, U.S.A. E-mail: [email protected]
Julio S. Peredo
Affiliation:
9638 Baltimore Avenue, Laurel, Maryland 20723, U.S.A. E-mail: [email protected]
Nicholas D. Pyenson
Affiliation:
Department of Paleobiology, National Museum of Natural History, Washington, D.C. 20560, US.A.; andDepartments of Mammalogy and Paleontology, Burke Museum of Natural History and Culture, Seattle, Washington 98105, U.S.A. E-mail: [email protected]

Abstract

The fossil record of mammal dentition provides crucial insight into key ecological and functional transitions throughout mammalian evolutionary history. For cetaceans, both extant clades differ markedly from their stem ancestors; neither retains the differentiated dentition or the tribosphenic molars characteristic of Mammalia. We used quantitative measures of dental complexity across fossil and living cetaceans to identify a trend toward dental simplicity through the Neogene. Both extant cetacean clades depart from the ancestral mammalian condition and concurrently converge upon a reduced and simplified dentition; modern mysticetes all have become entirely edentulous (at birth), and living odontocetes possess teeth as single-rooted, conical pegs. These two parallel trends accompany major shifts in feeding strategy (i.e., filter feeding in mysticetes and echolocation in odontocetes), suggesting that these evolutionary innovations for prey acquisition are enabling factors for the loss of prey processing and subsequent convergence on dental simplification.

Type
Articles
Copyright
© 2018 The Paleontological Society. All rights reserved. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Armfield, B. A., Zheng, Z., Bajpai, S., Vinyard, C. J., and Thewissen, J.. 2013. Development and evolution of the unique cetacean dentition. PeerJ 1:117.Google Scholar
Boyer, D. M. 2008. Relief index of second mandibular molars is a correlate of diet among prosimian primates and other euarchontan mammals. Journal of Human Evolution 55:11181137.Google Scholar
Bunn, J. M., Boyer, D. M., Lipman, Y., St Clair, E. M., Jernvall, J., and Daubechies, I.. 2011. Comparing Dirichlet normal surface energy of tooth crowns, a new technique of molar shape quantification for dietary inference, with previous methods in isolation and in combination. American Journal of Physical Anthropology 145:247261.Google Scholar
Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., and Ranzuglia, G.. 2008. Meshlab: an open-source mesh processing tool. Eurographics Italian Chapter Conference 2008:129136.Google Scholar
Eschricht, D. F. 1849. Zoologisch-anatomisch-physiologische untersuchungen über die nordischen Wallthiere. Verlag von Leopold Voss, Leipzig.Google Scholar
Evans, A. R., and Janis, C. M.. 2014. The evolution of high dental complexity in the horse lineage. Annales Zoologici Fennici 51:7379.Google Scholar
Evans, A. R., Wilson, G. P., Fortelius, M., and Jernvall, J.. 2007. High-level similarity of dentitions in carnivorans and rodents. Nature 445:7881.Google Scholar
Geisler, J. H., Colbert, M. W., and Carew, J. L.. 2014. A new fossil species supports an early origin for toothed whale echolocation. Nature 508:383386.Google Scholar
Geisler, J. H., McGowen, M. R., Yang, G., and Gatesy, J.. 2011. A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea. BMC Evolutionary Biology 11:133.Google Scholar
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M.. 2012. The geologic time scale. Elsevier BV, Oxford, U.K.Google Scholar
Gregory, W. K. 1921. The origin and evolution of the human dentition: a palaeontological review. Journal of Dental Research 3:87228.Google Scholar
Hocking, D. P., Marx, F. G., Park, T., Fitzgerald, E. M. G., and Evans, A. R.. 2017. A behavioural framework for the evolution of feeding in predatory aquatic mammals. Proceedings of the Royal Society of London B, 284. doi: 10.1098/rspb.2016.2750.Google Scholar
Ishikawa, H., and Amasaki, H.. 1995. Development and physiological degradation of tooth buds and development of rudiment of baleen plate in southern minke whale, Balaenoptera acutorostrata. Journal of Veterinary Medical Science 57:665670.Google Scholar
Jernvall, J., Hunter, J. P., and Forteluis, M.. 1996. Molar tooth diversity, disparity, and ecology in Cenozoic ungulate radiations. Science 274:14891492.Google Scholar
Karlsen, K. 1962. Development of tooth germs and adjacent structures in the whalebone whale (Balaenoptera physalus (L.)). Hvalrådets Skrifter 45:156.Google Scholar
Lambert, O., Muizon, C. D., and Bianucci, G.. 2015. A new archaic homodont toothed cetacean (Mammalia, Cetacea, Odontoceti) from the early Miocene of Peru. Geodiversitas 37:79108.Google Scholar
Lindberg, D. R., and Pyenson, N. D.. 2007. Things that go bump in the night: evolutionary interactions between cephalopods and cetaceans in the tertiary. Lethaia 40:335343.Google Scholar
Lipps, J. H., and Mitchell, E.. 1976. Trophic model for the adaptive radiations and extinctions of pelagic marine mammals. Paleobiology 2:147155.Google Scholar
Lucas, P. W. 2004. Dental functional morphology: how teeth work. Cambridge University Press, Cambridge, U.K.Google Scholar
Marshall, C. D., and Goldbogen, J. A.. 2015. Feeding mechanisms. Pp. 95118 in M. A. Castellini and J.-A. Mellish, eds. Marine mammal physiology: Requisites for ocean living. CRC Press, Boca Raton, Fla.Google Scholar
Marx, F. G. 2011. The more the merrier? A large cladistic analysis of mysticetes, and comments on the transition from teeth to baleen. Journal of Mammalian Evolution 18:77100.Google Scholar
McGowen, M. R., Spaulding, M., and Gatesy, J.. 2009. Divergence date estimation and a comprehensive molecular tree of extant cetaceans. Molecular Phylogenetics and Evolution 53:891906.Google Scholar
Osborn, H. F. 1907. Evolution of mammalian molar teeth. Macmillan, New York.Google Scholar
Owen, R. 1845. Odontography; or, a treatise on the comparative anatomy of the teeth, their physiological relations, mode of sevelopement, and microscipic structure, in the vertebrate animals. Hippolyte Bailierre, London.Google Scholar
Pampush, J. D., Winchester, J. M., Morse, P. E., Vining, A. Q., Boyer, D. M., and Kay, R. F.. 2016. Introducing molaR: a new R package for quantitative topographic analysis of teeth (and other topographic surfaces). Journal of Mammalian Evolution 23:397412.Google Scholar
Peredo, C. M., Pyenson, N. D., and Boersma, A. T.. 2017. Decoupling tooth loss from the evolution of baleen in whales. Frontiers in Marine Science 4:111.Google Scholar
Prothero, D. R., Ivany, L. C., and Nesbitt, E. A.. 2003. From greenhouse to icehouse: the marine Eocene–Oligocene transition. Columbia University Press, New York.Google Scholar
Pyenson, N. D. 2017. The ecological rise of whales chronicled by the fossil record. Current Biology 27:R558R564.Google Scholar
Ridewood, W. G. 1923. Observations on the skull in foetal specimens of whales of the genera Megaptera and Balaenoptera . Philosophical Transactions of the Royal Society of London B 211:209272.Google Scholar
Saint-Hilaire, G. 1807. Considérations sur les pièces de la tête osseuse des animaux vertébrés, et particulièrement sur celles du crâne des oiseaux. Annales du museum d’historia naturelle 10:342365.Google Scholar
Smits, P. D., and Evans, A. R.. 2012. Functional constraints on tooth morphology in carnivorous mammals. BMC Evolutionary Biology 12:146156.Google Scholar
Steeman, M. E., Hebsgaard, M. B., Fordyce, R. E., Ho, S. Y., Rabosky, D. L., Nielsen, R., Rahbek, C., Glenner, H., Sørensen, M. V., and Willerslev, E.. 2009. Radiation of extant cetaceans driven by restructuring of the oceans. Systematic Biology 58:573585.Google Scholar
Tanaka, Y., and Fordyce, R. E.. 2015. Historically significant late Oligocene dolphin Microcetus hectori Benham 1935: a new species of Waipatia (Platanistoidea). Journal of the Royal Society of New Zealand 45:135150.Google Scholar
Tanaka, Y., and Fordyce, R. E.. 2016. Awamokoa tokarahi, a new basal dolphin in the Platanistoidea (late Oligocene, New Zealand). Journal of Systematic Palaeontology 15:365386.Google Scholar
Thewissen, J., Sensor, J. D., Clementz, M. T., and Bajpai, S.. 2011. Evolution of dental wear and diet during the origin of whales. Paleobiology 37:655669.Google Scholar
Thewissen, J. G. M., Hieronymus, T. L., George, J. C., Suydam, R., Stimmelmayr, R., and McBurney, D.. 2017. Evolutionary aspects of the development of teeth and baleen in the bowhead whale. Journal of Anatomy 230:549566.Google Scholar
Uhen, M. D. 2004. Form, function, and anatomy of Dorudon atrox (Mammalia, Cetacea): an archaeocete from the Middle to Late Eocene of Egypt. University of Michigan Museum of Paleontology Papers on Paleontology 34:1222.Google Scholar
Uhen, M. D. 2017. Dental morphology. Pp. 246250 in B. Würsig, J. G. M. Thewissen, and K. M. Kovacs, eds. Encyclopedia of marine mammals. Academic, London.Google Scholar
Uhen, M. D., and Pyenson, N. D.. 2007. Diversity estimates, biases, and histriographic effects: resolving cetacean diversity in the Tertiary. Paleontologia Electronica 10:122.Google Scholar
Ungar, P. S. 2010. Mammal teeth: origin, evolution, and diversity. Johns Hopkins University Press, Baltimore, Md.Google Scholar
Werth, A. J. 2000. Feeding in marine mammals. Pp. 475514 in K. Schwenk, ed. Feeding: form, function and evolution in tetrapod vertebrates. Academic, New York.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.. 2001a. Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science 292:686693.Google Scholar
Zachos, J. C., Shackleton, N. J., Revenaugh, J. S., Pälike, H., and Flower, B. P.. 2001b. Climate response to orbital forcing across the Oligocene–Miocene boundary. Science 292:274278.Google Scholar