Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-18T03:20:48.906Z Has data issue: false hasContentIssue false

Conodont size, trophic level, and the evolution of platform elements

Published online by Cambridge University Press:  18 June 2019

Samuel Ginot
Affiliation:
Institut de Génomique Fonctionnelle de Lyon–ENS Lyon, CNRS, INRA, UCBL–32-34 avenue Tony Garnier, 69007 Lyon, France. E-mail: [email protected], [email protected]
Nicolas Goudemand
Affiliation:
Institut de Génomique Fonctionnelle de Lyon–ENS Lyon, CNRS, INRA, UCBL–32-34 avenue Tony Garnier, 69007 Lyon, France. E-mail: [email protected], [email protected]

Abstract

Conodonts are among the first vertebrates to have evolved mineralized tooth-like structures. Among these, the so-called P1 elements are known to have been used to break down food and display a wide variety of morphologies. In particular, the repeated independent evolution of platform-like P1 elements have been suggested to correspond to similar functional constraints linked to diet. To test this hypothesis of convergence, we measured size (as element length) for various conodont taxa and used it as a proxy for trophic level. We then tested the correlation between size and platform presence/absence, both on raw data and in a phylogenetic context. Retaining or excluding the platform traits from the character matrix has limited impact on the resulting phylogeny. Contrary to platform presence/absence, size shows no phylogenetic signal. Using the raw data, size and platform presence appear positively correlated. That correlation, however, is no longer significant if one corrects for the phylogeny. We conclude that platform presence cannot be explained by an enlargement of the conodont element, be it via a trophic-level change or developmental constraints. This suggests that conodonts as a whole, and in particular platform-bearing conodonts, were an ecologically diverse group and that the various known platform types are likely to reflect different, rather than convergent, ecological niches.

Type
Articles
Copyright
Copyright © The Paleontological Society. All rights reserved 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.26036h6

References

Literature Cited

Aldridge, R. J., Briggs, D. E. G., Smith, M. P., Clarkson, E. N. K., and Clark, N. D. L.. 1993. The anatomy of conodonts. Philosophical Transactions of the Royal Society of London B 340:405421.Google Scholar
Bergström, S. M., and Ferretti, A.. 2015. Conodonts in the Upper Ordovician Keisley Limestone of northern England: taxonomy, biostratigraphical significance and biogeographical relationships. Papers in Palaeontology 1:132.Google Scholar
Bergström, S. M., and Sweet, W. C.. 1966. Conodonts from the Lexington Limestone (Middle Ordovician) of Kentucky and its lateral equivalents in Ohio and Indiana. Bulletins of American Paleontology 50: 271441.Google Scholar
Choo, B., Long, J. A., and Trinajstic, K.. 2009. A new genus and species of basal actinopterygian fish from the Upper Devonian Gogo Formation of Western Australia. Acta Zoologica 90:194210.Google Scholar
Cohen, J. E., Pimm, S. L., Yodzis, P., and Saldaña, J.. 1993. Body sizes of animal predators and animal prey in food webs. Journal of Animal Ecology 62:6778.Google Scholar
Conway Morris, S. 1990. Typhloesus wellsi (Melton and Scott, 1973), a bizarre metazoan from the Carboniferous of Montana, USA. Philosophical Transactions of the Royal Society of London B 327:595624.Google Scholar
Diniz-Filho, J. A. F., Santos, T., Rangel, T. F., and Bini, L. M.. 2012. A comparison of metrics for estimating phylogenetic signal under alternative evolutionary models. Genetics and Molecular Biology 35:673679.Google Scholar
Donoghue, P. C. 1998. Growth and patterning in the conodont skeleton. Philosophical Transactions of the Royal Society of London B 353:633666.Google Scholar
Donoghue, P. C. 2001. Microstructural variation in conodont enamel is a functional adaptation. Proceedings of the Royal Society of London B 268:16911698.Google Scholar
Donoghue, P. C., and Purnell, M. A.. 1999a. Growth, function, and the conodont fossil record. Geology 27:251254.Google Scholar
Donoghue, P. C., and Purnell, M. A.. 1999b. Mammal-like occlusion in conodonts. Paleobiology 25:5874.Google Scholar
Donoghue, P. C., Purnell, M. A., Aldridge, R. J., and Zhang, S.. 2008. The interrelationships of “complex”conodonts (Vertebrata). Journal of Systematic Palaeontology 6:119153.Google Scholar
Donoghue, P. C., and Rücklin, M.. 2016. The ins and outs of the evolutionary origin of teeth. Evolution and Development 18:1930.Google Scholar
Fritz, S. A., and Purvis, A.. 2010. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conservation Biology 24:10421051.Google Scholar
Goudemand, N., Orchard, M. J., Urdy, S., Bucher, H., and Tafforeau, P.. 2011. Synchrotron-aided reconstruction of the conodont feeding apparatus and implications for the mouth of the first vertebrates. Proceedings of the National Academy of Sciences USA 108:87208724.Google Scholar
Goudemand, N., Orchard, M. J., Bucher, H., and Jenks, J.. 2012. The elusive origin of Chiosella timorensis (Conodont Triassic). Geobios 45:199207.Google Scholar
Ho, L. S. T., and Ane, C.. 2014. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models Systematic Biology 63:397408.Google Scholar
Ives, A. R., and Garland, T.. 2014. Phylogenetic regression for binary dependent variables. Pp. 231261 in Zsolt, L., ed. Modern phylogenetic comparative methods and their application in evolutionary biology. Springer, Berlin.Google Scholar
Janvier, P. 2015. Facts and fancies about early fossil chordates and vertebrates. Nature 520:483.Google Scholar
Jennings, S., Pinnegar, J. K., Polunin, N. V., and Boon, T. W.. 2001. Weak cross-species relationships between body size and trophic level belie powerful size-based trophic structuring in fish communities. Journal of Animal Ecology 70:934944.Google Scholar
Jones, D., Evans, A. R., Siu, K. K., Rayfield, E. J., and Donoghue, P. C.. 2012. The sharpest tools in the box? Quantitative analysis of conodont element functional morphology. Proceedings of the Royal Society of London B 279:28492854.Google Scholar
Karpouzi, V. S., and Stergiou, K. I.. 2003. The relationships between mouth size and shape and body length for 18 species of marine fishes and their trophic implications. Journal of Fish Biology 62:13531365.Google Scholar
Leu, M., Bucher, H., and Goudemand, N.. 2018. Clade-dependent size response of conodonts to environmental changes during the late Smithian extinction. Earth-Science Reviews. doi: 10.1016/j.earscirev.2018.11.003.Google Scholar
Luo, G., Lai, X., Shi, G. R., Jiang, H., Yin, H., Xie, S., Tong, J., Zhang, K., He, W., and Wignall, P. B.. 2008. Size variation of conodont elements of the HindeodusIsarcicella clade during the Permian–Triassic transition in South China and its implication for mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 264:176187.Google Scholar
Martin, J. E., Tacail, T., Adnet, S., Girard, C., and Balter, V.. 2015. Calcium isotopes reveal the trophic position of extant and fossil elasmobranchs. Chemical Geology 415:118125.Google Scholar
Martínez-Pérez, C., Plasencia, P., Jones, D., Kolar-Jurkovšek, T., Sha, J., Botella, H., and Donoghue, P. C.. 2014. There is no general model for occlusal kinematics in conodonts. Lethaia 47:547555.Google Scholar
Martínez-Pérez, C., Rayfield, E. J., Botella, H., and Donoghue, P. C.. 2016. Translating taxonomy into the evolution of conodont feeding ecology. Geology 44:247250.Google Scholar
Mazza, M., and Martínez-Pérez, C.. 2016. Evolutionary convergence in conodonts revealed by synchrotron-based tomographic microscopy. Palaeontologia Electronica 19:111.Google Scholar
Miller, C. G., Heward, A. P., Mossoni, A., and Sansom, I. J.. 2018. Two new early balognathid conodont genera from the Ordovician of Oman and comments on the early evolution of prioniodontid conodonts. Journal of Systematic Palaeontology 16:571593.Google Scholar
Miyashita, T., Coates, M. I., Farrar, R., Larson, P., Manning, P. L., Wogelius, R. A., and Currie, P. J.. 2019. Hagfish from the Cretaceous Tethys Sea and a reconciliation of the morphological–molecular conflict in early vertebrate phylogeny. Proceedings of the National Academy of Sciences USA 116:21462151.Google Scholar
Molina-Venegas, R., and Rodríguez, M. Á.. 2017. Revisiting phylogenetic signal: strong or negligible impacts of polytomies and branch length information? BMC Evolutionary Biology, 17:53.Google Scholar
Murdock, D. J., Dong, X. P., Repetski, J. E., Marone, F., Stampanoni, M., and Donoghue, P. C.. 2013. The origin of conodonts and of vertebrate mineralized skeletons. Nature 502:546.Google Scholar
Murphy, M. A., Valenzuela-Ríos, J. I., and Carls, P.. 2004. On classification of Pridoli (Silurian)–Lochkovian (Devonian) Spathognathodontidae (Conodonts). Campus Museum Contribution 6:125. University of California, Riverside.Google Scholar
Nicoll, R. S. 1977. Conodont apparatuses in an Upper Devonian palaeoniscoid fish from the Cannig Basin, Western Australia. Bureau of Mineral Resources Journal of Australian Geology and Geophysics 2:217228.Google Scholar
Nicoll, R. S. 1987. Form and function of the Pa element in the conodont animal. Pp. 7790 in Aldridge, R. J., ed. Palaeobiology of conodonts. Ellis Horwood, Chichester, UK.Google Scholar
Nicoll, R. S. 1995. Conodont element morphology, apparatus reconstructions and element function: a new interpretation of conodont biology with taxonomic implications. Courier Forschungsinstitut Senckenberg 182:247262.Google Scholar
Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N., and Pearse, W.. 2018. caper: comparative analyses of phylogenetics and evolution in R, R package version 1.0.1. https://CRAN.R-project.org/package=caper, accessed 17 October 2018.Google Scholar
Paradis, E., Claude, J., and Strimmer, K.. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289290.Google Scholar
Purnell, M. A. 1994. Skeletal ontogeny and feeding mechanisms in conodonts. Lethaia 27:129138.Google Scholar
Purnell, M. A. 1995. Microwear on conodont elements and macrophagy in the first vertebrates. Nature 374:798800.Google Scholar
Purnell, M. A. 2001. Scenarios, selection, and the ecology of early vertebrates. Pp. 188208 in Ahlberg, P. E., ed. Major events in early vertebrate evolution. CRC Press, Boca Raton, Fla.Google Scholar
Purnell, M. A., and Donoghue, P. C.. 1997. Architecture and functional morphology of the skeletal apparatus of ozarkodinid conodonts. Philosophical Transactions of the Royal Society of London B 352:15451564.Google Scholar
Purnell, M. A., and Jones, D.. 2012. Quantitative analysis of conodont tooth wear and damage as a test of ecological and functional hypotheses. Paleobiology 38:605626.Google Scholar
R Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org, accessed 18 July 2018.Google Scholar
Revell, L. J. 2012. phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3:217223.Google Scholar
Romanuk, T. N., Hayward, A., and Hutchings, J. A.. 2011. Trophic level scales positively with body size in fishes. Global Ecology and Biogeography 20:231240.Google Scholar
Sansom, I. J., Smith, M. P., Armstrong, H. A., and Smith, M. M.. 1992. Presence of the earliest vertebrate hard tissue in conodonts. Science 256:13081311.Google Scholar
Schaal, E. K., Clapham, M. E., Rego, B. L., Wang, S. C., and Payne, J. L.. 2016. Comparative size evolution of marine clades from the Late Permian through Middle Triassic. Paleobiology 42:127142.Google Scholar
Shirley, B., Grohganz, M., Bestmann, M., and Jarochowska, E.. 2018. Wear, tear and systematic repair: testing models of growth dynamics in conodonts with high-resolution imaging. Proceedings of the Royal Society of London B 285:20181614.Google Scholar
Suttner, T. J., Kido, E., and Briguglio, A.. 2018. A new icriodontid conodont cluster with specific mesowear supports an alternative apparatus motion model for Icriodontidae. Journal of Systematic Palaeontology 16:909926.Google Scholar
Sweet, W. C. 1988. The Conodonta: morphology, taxonomy, paleoecology, and evolutionary history of a long-extinct animal phylum, Vol. 10, pp. 1212. Clarendon Press, Oxford.Google Scholar
Sweet, W. C., and Donoghue, P. C.. 2001. Conodonts: past, present, future. Journal of Paleontology 75:11741184.Google Scholar
Tucker, M. A., and Rogers, T. L.. 2014. Examining predator–prey body size, trophic level and body mass across marine and terrestrial mammals. Proceedings of the Royal Society of London B 281:20142103.Google Scholar
Wainwright, P. C. 1988. Morphology and ecology: functional basis of feeding constraints in Caribbean labrid fishes. Ecology 69:635645.Google Scholar
Williams, M. E. 1990. Feeding behavior in Cleveland Shale fishes. Pp. 273287 in Boucot, A. J., ed. Evolutionary paleobiology of behavior and coevolution. Elsevier, Amsterdam.Google Scholar
Zatoń, M., and Rakociński, M.. 2014. Coprolite evidence for carnivorous predation in a Late Devonian pelagic environment of southern Laurussia. Palaeogeography, Palaeoclimatology, Palaeoecology 394:111.Google Scholar
Zatoń, M., Broda, K., Qvarnström, M., Niedźwiedzki, G., and Ahlberg, P. E.. 2017. The first direct evidence of a Late Devonian coelacanth fish feeding on conodont animals. Science of Nature 104:26.Google Scholar
Zhang, Z. T., Sun, Y. D., Wignall, P. B., Fu, J. L., Li, H. X., Wang, M. Y., and Lai, X. L.. 2018. Conodont size reduction and diversity losses during the Carnian Humid Episode in SW China. Journal of the Geological Society 175:10271031Google Scholar