Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-06T11:12:40.891Z Has data issue: false hasContentIssue false

Conflict and complementarity of paleontological and molecular chronologies?

Published online by Cambridge University Press:  17 December 2018

Ofir Katz*
Affiliation:
Dead Sea and Arava Science Center, Mount Masada, Tamar Regional Council 86910, Israel. E-mail: [email protected]

Abstract

Evolutionary history studies depend on having reliable chronologies of macroevolutionary processes. Construction of such chronologies often yields discrepancies between paleontological and molecular dates, which are sometimes viewed as conflicting. Nevertheless, each macroevolutionary process is composed of two main phases: emergence of a trait or clade and success of that trait or clade, which differ in mechanisms, drivers, and types of evidence. Moreover, emergence may be observed as gene divergence (which may be trait-coding or trait-unrelated genes), trait emergence, and clade emergence; whereas success can be observed as increase in abundance, diffusion, and/or diversity or as overall persistence over geologic time. Therefore, to fully and correctly understand any macroevolutionary process, it is of paramount importance to understand what event each date refers to, and how dates of various events and their integration reveal the complexity of macroevolutionary processes. I demonstrate this through three examples: the chronological gap between oxygenic photosynthesis emergence and the Great Oxidation Event, the chronological gap between paleontological and molecular dates of angiosperm emergence, and the evolution of plant silicon accumulation.

Type
On The Record
Copyright
Copyright © 2018 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bapst, D. W., Wright, A. M., Matzke, N. J., and Lloyd, G. T.. 2016. Typology, divergence dates, and macroevolutionary inferences vary between different tip-dating approaches applied to fossil theropods (Dinosauria). Biology Letters 12:20160237.Google Scholar
Baron, M. G., Norman, D. B., and Barrett, P. M.. 2017. A new hypothesis of dinosaur relationships and early dinosaur evolution. Nature 543:501507.Google Scholar
Benton, M. J. 2010. The origins of modern biodiversity on land. Philosophical Transactions of the Royal Society of London B 365:36673679.Google Scholar
Berendse, F., and Scheffer, M.. 2009. The angiosperm radiation revisited, an ecological explanation to Darwin's “abominable mystery.” Ecology Letters 12:865872.Google Scholar
Berman-Frank, I., Lundgern, P., and Falkowski, P.. 2003. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Research in Microbiology 154:157164.Google Scholar
Bouchenak-Khelldai, Y., Verbooom, G. A., Savolainen, V., and Hodjinson, T. R.. 2010. Biogeography of the grasses (Poaceae): a phylogenetic approach to reveal evolutionary history in geographical space and geological time. Botanical Journal of the Linnean Society 162:543557.Google Scholar
Bowe, L. M., Coat, G., and dePamphilis, C. W.. 2000. Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proceedings of the National Academy of Sciences USA 97:40924097.Google Scholar
Brower, A. V. Z., and DeSalle, R.. 1998. Patterns of mitochondrial versus nuclear DNA sequence divergence among nymphalid butterflies: the utility of wingless as a source of characters for phylogenetic inference. Insect Molecular Biology 7:7382.Google Scholar
Buick, R. 2008. When did oxygenic photosynthesis evolve? Philosophical Transactions of the Royal Society of London B 363:27312734.Google Scholar
Butlin, R., Debelle, A., Kerth, C., Snook, R. R., Beukeboom, L. W., Castillo Cajas, R. F., Diao, W., Maan, M. E., Paolucci, S., Weissing, F. J., Van de Zande, L., Hoikkala, A., Geuverink, E., Jennings, J., Kankare, M., Knott, K. E., Tyukmaeva, V. I., Zoumadakis, C., Ritchie, M. G., Barker, D., Immonen, E., Kirkpatrick, M., Noor, M., Macias, C., Schmitt, T., and Schilthuizen, M.. 2012. What do we need to know about speciation? Trends in Ecology and Evolution 27:2739.Google Scholar
Crampton, J. S., Beu, A. G., Cooper, R. A., Jones, C. M., Marshall, B., and Maxwell, P. A.. 2003. Estimating the rock volume bias in paleobiodiversity studies. Science 310:358360.Google Scholar
Crepet, W. L., Nixon, K. C., and Gandolfo, M. A.. 2004. Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. American Journal of Botany 91:16661682.Google Scholar
Davies, T. J., Smith, G. F., Bellstedt, D. U., Boatwright, J. S., Bytebier, B., Cowling, R. M., Forest, F., Harmon, L. J., Muasya, A. M., Schrire, B. D., Steenkamp, Y., van der Bank, M., and Savolainen, V.. 2011. Extinction risk and diversification are linked in plant biodiversity hotspots. PLoS Biology 9:e1000620.Google Scholar
De Baets, K., Antonelli, A., and Donoghue, P. C. J.. 2016. Tectonic blocks and molecular clocks. Philosophical Transactions of the Royal Society of London B 371:20160098.Google Scholar
Dominguez Lozano, F., and Schwartz, M. W.. 2005. Patterns of rarity and taxonomic group size in plants. Biological Conservation 126:146154.Google Scholar
Donoghue, M. J. 2005. Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny. Paleobiology 31:7793.Google Scholar
Edwards, S. V., and Beerli, P.. 2000. Gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution 54:18391854.Google Scholar
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., and Peterson, K. J.. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:10911097.Google Scholar
Forest, F. 2009. Calibrating the tree of life: fossils, molecules and evolutionary timescales. Annals of Botany 104:789794.Google Scholar
Gandolfo, M. A., Nixon, K. C., and Crepet, W. L.. 2008. Selection of fossils for calibration of molecular dating models. Annals of the Missouri Botanical Garden 95:3442.Google Scholar
Gheerbrandt, E., and Rage, J. C.. 2006. Paleobiogeography of Africa: how distinct from Gondwana and Laurasia? Palaeogeography, Palaeoclimatology, Palaeoecology 241:224246.Google Scholar
Godsoe, W. 2010. I can't define the niche but I know it when I see it: a formal link between statistical theory and the ecological niche. Oikos 119:5360.Google Scholar
Goldblatt, C., Lenton, T. M., and Watson, A. J.. 2006. Bistability of atmospheric oxygen and the Great Oxidation. Nature 443:683686.Google Scholar
Goswami, A., Milne, N., and Wroe, S.. 2010. Biting through constraints: cranial morphology, disparity and convergence across living and fossil carnivorous mammals. Proceedings of the Royal Society of London B. doi:10.1098/rspb.2010.2031.Google Scholar
Graur, D., and Martin, W.. 2004. Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends in Genetics 20:8086.Google Scholar
Hansen, T. F., and Orzack, S. H.. 2005. Assessing current adaptation and phylogenetic inertia as explanations of trait evolution: the need for controlled comparisons. Evolution 59:20632072.Google Scholar
Harnik, P. G. 2011. Direct and indirect refracts of biological factors on extinction risk in fossil bivalves. Proceedings of the National Academy of Sciences USA 108:1359413599.Google Scholar
Harnik, P. G., Simpson, C., and Payne, J. L.. 2012. Long-term differences in extinction risk among the seven forms of rarity. Proceedings of the Royal Society of London B 279:49694976.Google Scholar
Heard, S. B., and Hauser, D. L.. 1995. Key evolutionary innovations and their ecological mechanisms. Historical Biology 10:151173.Google Scholar
Heckman, D. S., Geiser, D. M., Eidell, B. R., Stauffer, R. L., Kardos, N. L., and Hedges, S. B.. 2001. Molecular evidence for the early colonization of land by fungi and plants. Science 293:11291133.Google Scholar
Hedges, S. B., and Kumar, S.. 2004. Precision of molecular time estimates. Trends in Genetics 20:242247.Google Scholar
Herendeen, P. S., Friis, E. M., Pedersen, K. R., and Crane, P. R.. 2017. Palaeobotanical redux: revisiting the age of the angiosperms. Nature Plants 3:17015.Google Scholar
Ho, S. Y. W., and Phillips, M. J.. 2009. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Systematic Biology 58:367380.Google Scholar
Hohmann-Marriott, M. F., and Blankenship, R. E.. 2011. Evolution of photosynthesis. Annual Review of Plant Biology 62:515548.Google Scholar
Hug, L. A., and Roger, A. J.. 2007. The impacts of fossils and taxon sampling on ancient molecular dating analyses. Molecular Biology and Evolution 24:18891897.Google Scholar
Hughes, N. C., and Chapman, R. E.. 2001. Morphometry and phylogeny in the resolution of paleobiological problems—unlocking the evolutionary significance of an assemblage of Silurian trilobites. Pp. 2954 in Adrian, J. M., Edgecomb, G. D., and Lieberman, B. S., eds. Fossils, phylogeny, and form. Topics in Geobiology, Vol. 19. Springer, New York.Google Scholar
Hunter, J. P. 1998. Key innovations and the ecology of macroevolution. Trends in Ecology and Evolution 13:3136.Google Scholar
Jablonski, D. 2008a. Biotic interactions and macroevolution: extensions and mismatches across scales and level. Evolution 62:715739.Google Scholar
Jablonski, D. 2008b. Extinction and the spatial dynamics of biodiversity. Proceedings of the National Academy of Sciences USA 105(Suppl. 1):1152811535.Google Scholar
Katz, O. 2014. Beyond grasses: the potential benefits of studying silicon accumulation in non-grass species. Frontiers in Plant Sciences 5:376.Google Scholar
Katz, O. 2015. Silica phytoliths in angiosperms: phylogeny and early evolutionary history. New Phytologist 208:642646.Google Scholar
Katz, O. 2018. Extending the scope of Darwin's “abominable mystery”: integrative approaches to understanding angiosperm origins and species richness. Annals of Botany 121:18.Google Scholar
Kodandaramaiah, U. 2011. Tectonic calibrations in molecular dating. Current Zoology 57:116124.Google Scholar
Kolbe, S. E., Lockwood, R., and Hunt, G.. 2011. Does morphological variation buffer against extinction? A test using veneroid bivalves from the Plio-Pleistocene of Florida. Paleobiology 37:355368.Google Scholar
Krassilov, V., and Silantieva, N.. 2005. Plant evolution in the Late Cretaceous (Turonian) of the southern Negev, Israel. Israel Journal of Plant Sciences 53:5564.Google Scholar
Lamsdell, J. C. 2015. Horseshoe crab phylogeny and independent colonizations of fresh water: ecological invasion as a driver for morphological innovation. Palaeontology 59:181194.Google Scholar
Li, Q., Gao, K. Q., Vinther, J., Shawkey, M. D., Clarke, J. A., D'Alba, L., Meng, Q., Briggs, D. E. G., and Prum, R. O.. 2010. Plumage color patterns of an extinct dinosaur. Science 327:13691372.Google Scholar
Lockwood, R. 2003. Abundance not linked to survival across the end-Cretaceous mass extinction: patterns in North American bivalves. Proceedings of the National Academy of Sciences USA 100:24782482.Google Scholar
Lyons, T. W., Reinhard, C. T., and Planavsky, N. J.. 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506:307315.Google Scholar
Ma, J. F., and Yamaji, N.. 2015. A cooperative system of silicon transport in plants. Trends in Plant Science 20:435442.Google Scholar
Magallon, S. A. 2004. Dating lineages: molecular and paleontological approaches to the temporal framework of clades. International Journal of Plant Sciences 165:S7S21.Google Scholar
Magallon, S., and Castillo, A.. 2009. Angiosperm diversification through time. American Journal of Botany 96:349365.Google Scholar
Magallon, S., Gomez-Acevedo, S., Sanchez-Reyes, L. L., and Hernandez-Hernandez, T.. 2015. A metacalibrated time-tree documents the early rise of flowering plants phylogenetic diversity. New Phytologist 207:437453.Google Scholar
Marjanovic, D., and Laurin, M.. 2007. Fossils, molecules, divergence times, and the origins of lissamphibians. Systematic Biology 56:369388.Google Scholar
McKay, T. F. C. 2001. The genetic architecture of quantitative traits. Annual Review of Genetics 35:303339.Google Scholar
McKinney, M. L. 1997. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annual Reviews of Ecology and Systematics 28:495516.Google Scholar
Nichols, R. 2001. Gene trees and species trees are not the same. Trends in Ecology and Evolution 16:358364.Google Scholar
Parham, J. F., Donoghue, P. C. J., Bell, C. J., Calway, T. D., Head, J. J., Holroyd, P. A., Inoue, J. G., Irmis, R. B., Joyce, W. G., Tsepka, D.T., Patane, J. S. L., Smith, N. D., Tarver, J. E., van Tuinen, M., Yang, Z., Angielczyk, K. D., Greenwood, J. M., Hipsley, C. A., Jacobs, L., Makovicky, P. J., Müller, J., Smith, K. T., Theodor, J. M., Warnock, R. C. M., and Benton, M. J.. 2012. Best practices for justifying fossil calibrations. Systematic Biology 61:346359.Google Scholar
Payne, J. L., and Finnegan, S.. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.Google Scholar
Pennell, M. W., Harmon, L. J., and Uyeda, J. C.. 2014. Is there room for punctuated equilibrium in macroevolution? Trends in Ecology and Evolution 29:2332.Google Scholar
Pigliucci, M. 2005. Evolution of phenotypic plasticity: where are we going now? Trends in Ecology and Evolution 20:481486.Google Scholar
Pigliucci, M. 2008. What, if any, is an evolutionary novelty? Philosophy of Science 75:887898.Google Scholar
Pigliucci, M., Murren, C. J., and Schlichting, C. D.. 2006. Phenotypic plasticity and evolution by genetic assimilation. Journal of Experimental Biology 209:23622367.Google Scholar
Planavsky, N. J., Asael, D., Hofmann, A., Reinhard, C. T., Lalonde, S. V., Knudsen, A., Wang, X., Ossa Ossa, F., Pecoits, E., Smith, A. J. B., Beukes, N. J., Bekker, A., Johnson, T. M., Konhauser, K. O., Lyons, T. W., and Rouxel, O. J.. 2014. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nature Geosciences 7:283286.Google Scholar
Poulin, E., Palma, A. T., and Feral, J. P.. 2002. Evolutionary versus ecological success in Antarctic benthic invertebrates. Trends in Ecology and Evolution 17:218222.Google Scholar
Prieto-Marquez, A. 2010. Global historical biogeography of hadrosaurid dinosaurs. Zoological Journal of the Linnean Society 159:503525.Google Scholar
Pulquerio, M. J. F., and Nichols, R. A.. 2007. Dates from the molecular clock: how wrong can we be? Trends in Ecology and Evolution 22:180184.Google Scholar
Purvis, A., Agapow, P. M., Gittleman, J. L., and Mace, G. M.. 2000. Nonrandom extinction and the loss of evolutionary history. Science 288:328330.Google Scholar
Pyron, A. A. 2011. Divergence time estimation using fossils as terminal taxa and the origins of lissamphibia. Systematic Biology 60:466481.Google Scholar
Qiu, Y. L., Lee, J., Bernasconi-Quadroni, F., Soltis, D. E., Soltis, P. S., Zanis, M., Zimmer, E. A., Chen, Z., Savolainen, V., and Chase, M. W.. 1999. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402:404407.Google Scholar
Quental, T. B., and Marshall, C. R.. 2010. Diversity dynamics: molecular phylogenies need the fossil record. Trends in Ecology and Evolution 25:434441.Google Scholar
Rannala, B., and Yang, Z.. 2003. Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164:16451656.Google Scholar
Rasmussen, B., Fletcher, I. R., Brocks, J. J., and Kilburn, M. R.. 2008. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:11011104.Google Scholar
Rohde, R. A., and Muller, R. A.. 2005. Cycles in fossil diversity. Nature 434:208210.Google Scholar
Rodriguez-Trelles, F., Tarrio, R., and Ayala, J. F.. 2002. A methodological bias toward overestimation of molecular evolutionary time scales. Proceedings of the National Academy of Sciences USA 99:81128115.Google Scholar
Roth-Nebelsick, A., Grimm, G., Mosburger, V., Hass, H., and Kerp, H.. 2000. Morphometric analysis of Rhynia and Asteroxylon: testing functional aspects of early land plant evolution. Paleobiology 26:405418.Google Scholar
Rudkin, D. M., and Young, G. A.. 2009. Horseshoe crabs—an ancient ancestry revealed. Pp. 2544 in Tanacredi, J., Botton, M., and Smith, D., eds. Biology and conservation of horseshoe crabs. Springer, New York.Google Scholar
Russell, G. J., Brooks, T. M., McKinney, M. M., and Anderson, C. G.. 2008. Present and future taxonomic selectivity in bird and mammal extinctions. Conservation Biology 12:13651376.Google Scholar
Rutschmann, F. 2006. Molecular dating of phylogenetic trees: a brief review of current methods that estimate divergence times. Diversity and Distributions 12:3548.Google Scholar
Rutschmann, F., Eriksson, T., Schönenberger, J., and Conti, E.. 2004. Did Crypteroniaceae really disperse out of India? Molecular dating evidence from rbcL, ndhF, and rpl16 intron sequences. International Journal of Plant Sciences 165:S69S83.Google Scholar
Sanderson, M. J. 2015. Back to the past: a new take on the timing of flowering plant diversification. New Phytologist 207:257259.Google Scholar
Sansom, R. S. 2015. Bias and sensitivity in the placement of fossil taxa resulting from interpretations of missing data. Systematic Biology 64:256266.Google Scholar
Sansom, R. S., Gabbott, S. E., and Purnell, M. A.. 2010. Non-random decay of chordate characters causes bias in fossil interpretation. Nature 463:797800.Google Scholar
Schiffels, S., and Durbin, R.. 2014. Inferring human population size and separation history from multiple genome sequences. Nature Genetics 46:919925.Google Scholar
Schirrmeister, B. E., Gugger, M., and Donoghue, P. J. C.. 2015. Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils. Palaeontology 58:769785.Google Scholar
Schluter, D. 2009. Evidence for ecological speciation and its alternatives. Science 323:737741.Google Scholar
Schopf, J. W. 2012. The fossil record of cyanobacteria. Pp. 1536 in Whitton, B. A., ed. Ecology of cyanobacteria II: their diversity in space and time. Springer, Berlin.Google Scholar
Sen, S. 2013. Dispersal of African mammals in Eurasia during the Cenozoic: ways and whys. Geobios 46:159172.Google Scholar
Shaw, K. L. 2002. Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: what mtDNA reveals and conceals about modes of speciation in Hawaiian crickets. Proceedings of the National Academy of Sciences USA 99:1612216127.Google Scholar
Small, R. L., Cronn, R. C., and Wendel, J. F.. 2004. Use of nuclear genes for phylogeny reconstruction in plants. Australian Systematic Botany 17:145170.Google Scholar
Sole-Cava, A. M., and Wörheide, G.. 2007. The perils and merits (or the good, the bad and the ugly) of DNA barcoding of sponges—a controversial discussion. Pp. 603612 in Custodio, M. R., Lobo-Hajdu, G., Hajdu, E., and Muricy, G., eds. Porifera research: biodiversity, innovation and sustainability. Museu Nacional, Rio de Janeiro.Google Scholar
Soltis, D. E., and Soltis, P. S.. 1998. Choosing an approach and an appropriate gene for phylogenetic analysis. Pp. 142 in Soltis, D. E., Soltis, P. S., and Doyle, J. J., eds. Molecular systematics of plants II: DNA sequencing. Springer, New York.Google Scholar
Strömberg, C. A. E., Di Stilio, V. S., and Song, Z.. 2016. Functions of phytoliths in vascular plants: an evolutionary perspective. Functional Ecology 30:12861297.Google Scholar
Struck, T. H., Feder, J. L., Bendiksby, M., Birkeland, S., Cerca, J., Gusarov, V. I., Kistenich, S., Larsson, K. H., Liow, L. H., Nowak, M. D., Stedje, B., Bachmann, L., and Dimitrov, D.. 2018. Finding evolutionary processes hidden in cryptic species. Trends in Ecology and Evolution 33:153163.Google Scholar
Trembath-Reichert, E., Wilson, J. P., McGlynn, S. E., and Fischer, W. W.. 2015. Four hundred million years of silica biomineralization in land plants. Proceedings of the National Academy of Sciences USA 112:54495454.Google Scholar
Wacey, D. 2010. Stromatolites in the ~3400 Ma Strelley Pool Formation, Western Australia: examining biogenicity from the macro- to the nano-scale. Astrobiology 10:381395.Google Scholar
Wall, J. D. 2003. Estimating ancestral population sizes and divergence times. Genetics 163:395404.Google Scholar
Whitman, D. W., and Agrawal, A. A.. 2009. What is phenotypic plasticity and why is it important? Pp. 163 in Whitman, D. W., and Ananthakrishnan, T. N., eds. Phenotypic plasticity of insects: mechanisms and consequences. CRC Press, Boca Raton, Fla.Google Scholar
Wiens, J. J. 2004. Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58:193197.Google Scholar
Wiens, J. J., and Donoghue, M. J.. 2004. Historical biogeography, ecology and species richness. Trends in Ecology and Evolution 19:639644.Google Scholar
Wignall, P. B., and Benton, M. J.. 1999. Lazarus taxa and fossil abundance at times of biotic crisis. Journal of the Geological Society 156:453456.Google Scholar
Wilson, E. O. 1987. Causes of ecological success: the case of the ants. Journal of Animal Ecology 56:19.Google Scholar
Woodward, S. R., Weyand, N. J., and Bunnell, M.. 1994. DNA sequences from Cretaceous period bone fragments. Science 226:12291232.Google Scholar
Xiong, J., Fischer, W. M., Inoue, K., Nakahara, M., and Bauer, C. E.. 2000. Early evolution of photosynthesis. Science 289:17241730.Google Scholar
Zavada, M. S. 2007. The identification of fossil angiosperm pollen and its bearing on the time and place of the origin of angiosperms. Plant Systematics and Evolution 263:117134.Google Scholar