Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-18T07:18:06.379Z Has data issue: false hasContentIssue false

Compositional turnover and ecological changes related to the waxing and waning of glaciers during the late Paleozoic ice age in ice-proximal regions (Pennsylvanian, western Argentina)

Published online by Cambridge University Press:  18 March 2016

Diego Balseiro*
Affiliation:
CICTERRA, CONICET and Universidad Nacional de Córdoba, Avenida Vélez Sarsfield 1611, Ciudad Universitaria, X5016GCA, Córdoba, Argentina. E-mail: [email protected]

Abstract

The late Paleozoic ice age (LPIA) had a profound effect on the biota. Despite much research having been focused on paleotropical regions or global-scale analyses, regional ecological changes have seldom been studied in ice-proximal basins. Here, I study the compositional turnover and diversity structure across the main Carboniferous glacial event recorded in western Argentina and the subsequent nonglacial interval. Brachiopod and bivalve data from western Argentina suggest that the transition from glacial to nonglacial climates caused major compositional changes. Turnover, however, was not uniform across the bathymetric gradient, being higher in deep environments. Because extirpation was concentrated in brachiopods, but immigration was similar in both clades, the taxonomic structure of the region was significantly modified. Although regional hierarchical diversity structure and occupancy distributions remained stable, dissecting the analysis in brachiopods and bivalves underscores that both clades had different responses to climate change. Brachiopods, on the one hand, show stability in the diversity structure and a very slight decrease in occupancies of intermediate genera, while bivalves show an important rise in diversity, both at the environment and regional scale, and an increase in genera with intermediate occupancies. The bathymetric diversity gradient was also modified from hump shaped with maximum diversity in the deep subtidal to a linear gradient with maximum values toward the offshore. However, relative compositional differences within environments remained stable, with maximum values at intermediate depths both in glacial and nonglacial intervals. Moreover, local-scale coexistence between brachiopods and bivalves changed in the nonglacial interval, showing significant segregation, which indicates relevant modifications in community assembly dynamics. Results from western Argentina highlight the magnitude of regional-scale ecological changes during the LPIA in ice-proximal regions, suggesting that the waxing and waning of glaciers was able to cause regional taxonomic turnover and medium-scale ecological changes even during intervals of relative macroevolutionary quiescence.

Type
Articles
Copyright
Copyright © 2016 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aberhan, M., and Kiessling, W.. 2015. Persistent ecological shifts in marine molluscan assemblages across the end-Cretaceous mass extinction. Proceedings of the National Academy of Sciences USA 112:72077212.Google Scholar
Alonso-Muruaga, P. J., Buatois, L. A., and Limarino, C. O.. 2013. Ichnology of the Late Carboniferous Hoyada Verde Formation of western Argentina: Exploring postglacial shallow-marine ecosystems of Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology 369:228238.Google Scholar
Alroy, J. 2015. A simple way to improve multivariate analyses of paleoecological data sets. Paleobiology 41:377386.Google Scholar
Anderson, M. J. 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245253.Google Scholar
Angiolini, L., Jadoul, F., Leng, M. J., Stephenson, M. H., Rushton, J., Chenery, S., and Crippa, G.. 2009. How cold were the Early Permian glacial tropics? Testing sea-surface temperature using the oxygen isotope composition of rigorously screened brachiopod shells. Journal of the Geological Society of London 166:933945.Google Scholar
Astini, R. A., Dávila, F. M., López Gamundí, O. R., Gómez, F. J., Collo, G., Ezpeleta, M., Martina, F., and Ortiz, A.. 2005. Cuencas de la región precordillerana. Pp. 115146in L. A. Chebli, G. A. Cortiñas, and J. S. Spalletti, eds. Frontera Exploratoria de La Argentina. Instituto Argentino del Petróleo y del Gas, Buenos Aires, Argentina.Google Scholar
Azcuy, C. L., Beri, A., Bernardes-de-Oliveira, M. E. C., Carrizo, H. A., di Pasquo, M., Diaz Saravia, P., González, C. R., Iannuzzi, R., Lemos, V. B., Melo, J. H. G., Pagani, M. A., Rohn, R., Amenábar, C. R., Sabattini, N., Souza, P. A., Taboada, A. C., and Vergel, M. d M.. 2007. Bioestratigrafía del Paleozoico Superior de América del Sur: Primera Etapa de Trabajo Hacia una Nueva Propuesta Cronoestratigráfica. Asociación Geológica Argentina, Serie D, Publicación Especial 11:965.Google Scholar
Badyrka, K., Clapham, M. E., and López, S.. 2013. Paleoecology of brachiopod communities during the late Paleozoic ice age in Bolivia (Copacabana Formation, Pennsylvanian–Early Permian). Palaeogeography, Palaeoclimatology, Palaeoecology 387:5665.Google Scholar
Balseiro, D., and Waisfeld, B. G.. 2013. Ecological instability in Upper Cambrian–Lower Ordovician trilobite communities from Northwestern Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 370:6476.Google Scholar
Balseiro, D., Sterren, A. F., and Cisterna, G. A.. 2014. Coexistence of brachiopods and bivalves in the Late Paleozoic of Western Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 414:133145.Google Scholar
Birgenheier, L. P., Fielding, C. R., Rygel, M. C., Frank, T. D., and Roberts, J.. 2009. Evidence for dynamic climate change on sub-106-year scales from the Late Paleozoic glacial record, Tamworth Belt, New South Wales, Australia. Journal of Sedimentary Research 79:5682.Google Scholar
Bonelli, J. R. J., and Patzkowsky, M. E.. 2008. How are global patterns of faunal turnover expressed at regional scales? Evidence from the Upper Mississippian (Chesterian Series), Illinois Basin, USA. PALAIOS 23:760772.Google Scholar
Bonelli, J. R. J., and Patzkowsky, M. E.. 2011. Taxonomic and ecologic persistence across the onset of the Late Paleozoic Ice Age: Evidence from the Upper Mississippian (Chesterian Series), Illinois Basin, United States. PALAIOS 26:517.Google Scholar
Buatois, L. A., Netto, R. G., and Mángano, M. G.. 2010. Ichnology of late Paleozoic postglacial transgressive deposits in Gondwana: reconstructing salinity conditions in coastal ecosystems affected by strong meltwater discharge. In O. López Gamundí and L. A. Buatois, eds. Late Paleozoic glacial events and postglacial transgressions in Gondwana. Geological Society of America Special Paper 468:149173. Geological Society of America, Boulder, Colo.Google Scholar
Buatois, L. A., Netto, R. G., Gabriela Mángano, M., and Carmona, N. B.. 2013. Global deglaciation and the re-appearance of microbial matground-dominated ecosystems in the late Paleozoic of Gondwana. Geobiology 11:307317.Google Scholar
Burns, J. H., and Strauss, S. Y.. 2011. More closely related species are more ecologically similar in an experimental test. Proceedings of the National Academy of Sciences USA 108:53025307.Google Scholar
Bush, A. M., and Brame, R. I.. 2010. Multiple paleoecological controls on the composition of marine fossil assemblages from the Frasnian (Late Devonian) of Virginia, with a comparison of ordination methods. Paleobiology 36:573591.Google Scholar
Césari, S. N., Limarino, C. O., and Gulbranson, E. L.. 2011. An Upper Paleozoic bio-chronostratigraphic scheme for the western margin of Gondwana. Earth-Science Reviews 106:149160.Google Scholar
Chao, A., Chiu, C.-H., and Hsieh, T. C.. 2012. Proposing a resolution to debates on diversity partitioning. Ecology 93:20372051.Google Scholar
Christie, M., Holland, S. M., and Bush, A. M.. 2013. Contrasting the ecological and taxonomic consequences of extinction. Paleobiology 39:538559.Google Scholar
Cisterna, G. A. 2010. Earliest Permian brachiopod faunas of west-central Argentina: defining the Pennsylvanian–Permian boundary in Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology 298:91100.Google Scholar
Cisterna, G. A., and Sterren, A. F.. 2008. Late Carboniferous Levipustula fauna in the Leoncito Formation, San Juan province, Argentine Precordillera: biostratigraphical and palaeoclimatological implications. Proceedings of the Royal Society of Victoria 120:135145.Google Scholar
Cisterna, G. A., and Sterren, A. F.. 2010. Levipustula Fauna” in central-western Argentina and its relationships with the Carboniferous glacial event in the southwestern Gondwanan margin. In O. López Gamundí and L. A. Buatois, eds. Late Paleozoic glacial events and postglacial transgressions in Gondwana. Geological Society of America Special Paper 468:133147. Geological Society of America, Boulder, Colo.Google Scholar
Cisterna, G. A., Sterren, A. F., and Gutiérrez, P. R.. 2011. The Carboniferous–Permian boundary in the central western Argentinean basins: paleontological evidences. Andean Geology 38:349370.Google Scholar
Cisterna, G. A., Sterren, A. F., and Niemeyer, H.. 2014. Las sucesiones carbonáticas marinas del Pérmico Temprano en Antofagasta, norte de Chile. Andean Geology 41:626638.Google Scholar
Clapham, M. E., and James, N. P.. 2008. Paleoecology of Early–Middle Permian marine communities in eastern Australia: response to global climate change in the aftermath of the late Paleozoic ice age. PALAIOS 23:738750.Google Scholar
Clapham, M. E., and James, N. P.. 2012. Regional-scale marine faunal change in eastern Australia during Permian climate fluctuations and its relationship to local community restructuring. Palaios 27:627635.Google Scholar
Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18:117143.Google Scholar
Crowell, J. C. 1999. Pre-Mesozoic ice ages: their bearing on understanding the climate system. Geological Society of America Memoir 192:1112.Google Scholar
Danise, S., Twitchett, R. J., Little, C. T. S., and Clémence, M.-E.. 2013. The impact of global warming and anoxia on marine benthic community dynamics: an example from the Toarcian (Early Jurassic). PLoS ONE 8:e56255.CrossRefGoogle ScholarPubMed
Desjardins, P. R., Buatois, L. A., Limarino, C. O., and Cisterna, G. A.. 2009. Latest Carboniferous–earliest Permian transgressive deposits in the Paganzo Basin of western Argentina: lithofacies and sequence stratigraphy of a coastal-plain to bay succession. Journal of South American Earth Sciences 28:4053.Google Scholar
Desjardins, P. R., Buatois, L. A., Mángano, M. G., and Limarino, C. O.. 2010. Ichnology of the latest Carboniferous–earliest Permian transgression in the Paganzo Basin of western Argentina: the interplay of ecology, sea-level rise, and paleogeography during postglacial times in Gondwana. In O. López Gamundí and L. A. Buatois, eds. Late Paleozoic glacial events and postglacial transgressions in Gondwana. Geological Society of America Special Paper 468:175192. Geological Society of America, Boulder, Colo.Google Scholar
DiMichele, W. A., Pfefferkorn, H. W., and Gastaldo, R. A.. 2001. Response of Late Carboniferous and Early Permian plant communities to climate change. Annual Review of Earth and Planetary Sciences 29:461487.Google Scholar
DiMichele, W. A., Behrensmeyer, A. K., Olszewski, T. D., Labandeira, C. C., Pandolfi, J. M., Wing, S. L., and Bobe, R.. 2004. Long-term stasis in ecological assemblages: evidence from the fossil record. Annual Review of Ecology, Evolution, and Systematics 35:285322.Google Scholar
Dineen, A. A., Fraiser, M. L., and Isbell, J. L.. 2013. Palaeoecology and sedimentology of Carboniferous glacial and post-glacial successions in the Paganzo and Río Blanco basins of northwestern Argentina. In A. Gasiewicz and M. Słowakiewicz, eds. Palaeozoic climate cycles: their evolutionary and sedimentological impact Geological Society of London Special Publication 376:109140. Geological Society, London.Google Scholar
Droser, M. L., Bottjer, D. J., Sheehan, P. M., and McGhee, G. R. J.. 2000. Decoupling of taxonomic and ecologic severity of Phanerozoic marine mass extinctions. Geology 28:675678.Google Scholar
Fall, L. M., and Olszewski, T. D.. 2010. Environmental disruptions influence taxonomic composition of brachiopod paleocommunities in the Middle Permian Bell Canyon Formation (Delaware Basin, west Texas). PALAIOS 25:247259.Google Scholar
Fielding, C. R., Frank, T. D., Birgenheier, L. P., Rygel, M. C., Jones, A. T., and Roberts, J.. 2008a. Stratigraphic imprint of the Late Palaeozoic ice age in eastern Australia: a record of alternating glacial and nonglacial climate regime. Journal of the Geological Society, London 165:129140.Google Scholar
Fielding, C. R., Frank, T. D., Birgenheier, L. P., Rygel, M. C., Jones, A. T., and Roberts, J.. 2008b. Stratigraphic record and facies associations of the Late Paleozoic ice age in eastern Australia (New South Wales and Queensland). In C. R. Fielding, T. D. Frank, and J. L. Isbell, eds. Resolving the Late Paleozoic ice age in time and space. Geological Society of America Special Paper 441:4157. Geological Society of America, Boulder, Colo.Google Scholar
Fielding, C. R., Frank, T. D., and Isbell, J. L.. 2008c. The Late Paleozoic ice age—a review of current understanding and synthesis of global climate patterns. In C. R. Fielding, T. D. Frank and J. L. Isbell, eds. Resolving the Late Paleozoic ice age in time and space. Geological Society of America Special Paper 441:343354. Geological Society of America, Boulder, Colo.Google Scholar
Geuna, S. E., Escosteguy, L. D., and Limarino, C. O.. 2010. Palaeomagnetism of the Carboniferous–Permian Patquía Formation, Paganzo Basin, Argentina: implications for the apparent polar wander path for South America and Gondwana during the Late Palaeozoic. Geologica Acta 8:373397.Google Scholar
Gulbranson, E. L., Montañez, I. P., Schmitz, M. D., Limarino, C. O., Isbell, J. L., Marenssi, S. A., and Crowley, J. L.. 2010. High-precision U-Pb calibration of Carboniferous glaciation and climate history, Paganzo Group, NW Argentina. Geological Society of America Bulletin 122:14801498.Google Scholar
Gulbranson, E. L., Isbell, J. L., Montañez, I. P., Limarino, C. O., Marenssi, S. A., Meyer, K., and Hull, C.. 2014. Reassessment of mid-Carboniferous glacial extent in southwestern Gondwana (Rio Blanco Basin, Argentina) inferred from paleo-mass transport of diamictites. Gondwana Research 25:13691379.Google Scholar
Gulbranson, E. L., Montañez, I. P., Tabor, N. J., and Limarino, C. O.. 2015. Late Pennsylvanian aridification on the southwestern margin of Gondwana (Paganzo Basin, NW Argentina): a regional expression of a global climate perturbation. Palaeogeography, Palaeoclimatology, Palaeoecology 417:220235.Google Scholar
Harrison, S. P., Ross, S. J., and Lawton, J. H.. 1992. Beta diversity on geographic gradients in Britain. Journal of Animal Ecology 61:151158.Google Scholar
Heim, N. A. 2009. Stability of regional brachiopod diversity structure across the Mississippian/Pennsylvanian boundary. Paleobiology 35:393412.Google Scholar
Henry, L. C., Isbell, J. L., and Limarino, C. O.. 2008. Carboniferous glacigenic deposits of the proto-Precordillera of west-central Argentina. In C. R. Fielding, T. D. Frank and J. L. Isbell, eds. Resolving the Late Paleozoic ice age in time and space. Geological Society of America Special Paper 441:131142. Geological Society of America, Boulder, Colo.Google Scholar
Henry, L. C., Isbell, J. L., Limarino, C. O., McHenry, L. J., and Fraiser, M. L.. 2010. Mid-Carboniferous deglaciation of the Protoprecordillera, Argentina recorded in the Agua de Jagüel palaeovalley. Palaeogeography, Palaeoclimatology, Palaeoecology 298:112129.Google Scholar
Holt, A. R., Gaston, K. J., and He, F.. 2002. Occupancy–abundance relationships and spatial distribution: a review. Basic and Applied Ecology 3:113.Google Scholar
Hubbell, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, N.J.Google Scholar
Hubbell, S. P. 2006. Neutral theory and the evolution of ecological equivalence. Ecology 87:13871398.Google Scholar
Hurlbert, A. H. 2004. Species–energy relationships and habitat complexity in bird communities. Ecology Letters 7:714720.CrossRefGoogle Scholar
Isbell, J. L., Fraiser, M. L., and Henry, L. C.. 2008. Examining the complexity of environmental change during the late Paleozoic and early Mesozoic. PALAIOS 23:267269.Google Scholar
Isbell, J. L., Henry, L. C., Gulbranson, E. L., Limarino, C. O., Fraiser, M. L., Koch, Z. J., Ciccioli, P. L., and Dineen, A. A.. 2012. Glacial paradoxes during the late Paleozoic ice age: evaluating the equilibrium line altitude as a control on glaciation. Gondwana Research 22:119.Google Scholar
Ivany, L. C., Brett, C. E., Wall, H. L. B., Wall, P. D., and Handley, J. C.. 2009. Relative taxonomic and ecologic stability in Devonian marine faunas of New York State: a test of coordinated stasis. Paleobiology 35:499524.Google Scholar
Jenkins, D. G. 2011. Ranked species occupancy curves reveal common patterns among diverse metacommunities. Global Ecology and Biogeography 20:486497.Google Scholar
Jost, L. 2006. Entropy and diversity. Oikos 113:363375.Google Scholar
Jost, L. 2007. Partitioning diversity into independent alpha and beta components. Ecology 88:24272439.Google Scholar
Kaspari, M., O’Donnell, S., and Kercher, J. R.. 2000. Energy, density, and constraints to species richness: ant assemblages along a productivity gradient. American Naturalist 155:280293.Google Scholar
Kelley, P. H., and Raymond, A. C.. 1991. Migration, origination and extinction of Southern Hemisphere brachiopods during the middle Carboniferous. Palaeogeography, Palaeoclimatology, Palaeoecology 86:2339.Google Scholar
Lande, R. 1996. Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:513.Google Scholar
Legendre, P., and Legendre, L.. 2012. Numerical ecology, 3rd ed. Elsevier, Amsterdam.Google Scholar
Levins, R. 1968. Evolution in changing environments. Princeton University Press, Princeton, N.J.Google Scholar
Limarino, C. O., Césari, S. N., Net, L. I., Marenssi, S. A., Gutiérrez, P. R., and Tripaldi, A.. 2002. The Upper Carboniferous postglacial transgression in the Paganzo and Río Blanco basins (northwestern Argentina): facies and stratigraphic significance. Journal of South American Earth Sciences 15:445460.Google Scholar
Limarino, C. O., Tripaldi, A., Marenssi, S. A., and Fauqué, L. E.. 2006. Tectonic, sea-level, and climatic controls on Late Paleozoic sedimentation in the western basins of Argentina. Journal of South American Earth Sciences 22:205226.Google Scholar
Limarino, C. O., Isbell, J. L., Ciccioli, P. L., and Taboada, A. C.. 2013. La secuencia neopaleozoica de la quebrada de Agua de Jagüel (Precordillera de Mendoza): edad y redefinición estratigráfica. Revista de la Asociación Geológica Argentina 70:216228.Google Scholar
Limarino, C. O., Césari, S. N., Spalletti, L. a., Taboada, A. C., Isbell, J. L., Geuna, S., and Gulbranson, E. L.. 2014. A paleoclimatic review of southern South America during the late Paleozoic: a record from icehouse to extreme greenhouse conditions. Gondwana Research 25:13961421.Google Scholar
López Gamundí, O. R. 1997. Glacial–postglacial transition in the late Paleozoic basins of southern South America. Pp. 147168in I. P. Martini, ed Late glacial and postglacial environmental changes: Quaternary, Carboniferous–Permian, and Proterozoic. Oxford University Press, Oxford.Google Scholar
López Gamundí, O. R. 2001. La Formación Majaditas (Carbonífero), flanco occidental de la Precordillera sanjuanina: litoestratigrafia y facies. AAS Revista 8:5785.Google Scholar
López Gamundí, O. R. 2010. Transgressions related to the demise of the Late Paleozoic ice age: their sequence stratigraphic context. In O. López Gamundí and L. A. Buatois, eds. Late Paleozoic glacial events and postglacial transgressions in Gondwana. Geological Society of America Special Paper 46:81–35. Geological Society of America, Boulder, Colo.Google Scholar
López Gamundí, O. R., and Martínez, M.. 2000. Evidence of glacial abrasion in the Calingasta–Uspallata and western Paganzo basins, mid-Carboniferous of western Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 159:145165.Google Scholar
López Gamundí, O. R., and Martínez, M.. 2003. Esquema estratigráfico-secuencial para las unidades neopaleozoicas de la cuenca Calingasta-Uspallata en el flanco occidental de la Precordillera. Revista de la Asociación Geológica Argentina 58:367382.Google Scholar
López Gamundí, O. R., Espejo, I. S., Conaghan, P. J., and Powell, C. M.. 1994. Southern South America. Geological Society of America Memoir 1984:281329.Google Scholar
MacArthur, R. H., Recher, H., and Cody, M.. 1966. On the relation between habitat selection and species diversity. American Naturalist 100:319332.Google Scholar
McGhee, G. R. J. 1981. Evolutionary replacement of ecological equivalents in Late Devonian benthic marine communities. Palaeogeography, Palaeoclimatology, Palaeoecology 34:267283.Google Scholar
McGhee, G. R. J., Sheehan, P. M., Bottjer, D. J., and Droser, M. L.. 2012. Ecological ranking of Phanerozoic biodiversity crises: the Serpukhovian (early Carboniferous) crisis had a greater ecological impact than the end-Ordovician. Geology 40:147150.CrossRefGoogle Scholar
McGhee, G. R. J., Clapham, M. E., Sheehan, P. M., Bottjer, D. J., and Droser, M. L.. 2013. A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeography, Palaeoclimatology, Palaeoecology 370:260270.Google Scholar
Minchin, P. R. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69:89107.Google Scholar
Montañez, I. P., and Poulsen, C. J.. 2013. The Late Paleozoic ice age: an evolving paradigm. Annual Review of Earth and Planetary Sciences 41:629656.Google Scholar
Montgomery, D. R. 2002. Valley formation by fluvial and glacial erosion. Geology 30:10471050.Google Scholar
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., and Wagner, H.. 2015. vegan: Community Ecology Package, Version 2.2-1. http://CRAN.R-project.org/package=vegan.Google Scholar
Olszewski, T. D., and Patzkowsky, M. E.. 2001a. Evaluating taxonomic turnover: Pennsylvanian–Permian brachiopods and bivalves of the North American midcontinent. Paleobiology 27:646668.Google Scholar
Olszewski, T. D., and Patzkowsky, M. E.. 2001b. Measuring recurrence of marine biotic gradients: a case study from the Pennsylvanian–Permian midcontinent. PALAIOS 16:444460.Google Scholar
Patzkowsky, M. E., and Holland, S. M.. 2003. Lack of community saturation at the beginning of the Paleozoic plateau: the dominance of regional over local processes. Paleobiology 29:545560.Google Scholar
Patzkowsky, M. E., and Holland, S. M.. 2007. Diversity partitioning of a Late Ordovician marine biotic invasion: controls on diversity in regional ecosystems. Paleobiology 33:295309.Google Scholar
Patzkowsky, M. E., and Holland, S. M.. 2012. Stratigraphic paleobiology: Understanding the distribution of fossil taxa in time and space. University of Chicago Press, Chicago.Google Scholar
Payne, J. L., Heim, N. A., Knope, M. L., and McClain, C. R.. 2014. Metabolic dominance of bivalves predates brachiopod diversity decline by more than 150 million years. Proceedings of the Royal Society B: Biological Sciences 281:20133122.Google Scholar
Powell, M. G. 2005. Climatic basis for sluggish macroevolution during the late Paleozoic ice age. Geology 33:381384.Google Scholar
Powell, M. G. 2007. Latitudinal diversity gradients for brachiopod genera during late Palaeozoic time: links between climate, biogeography and evolutionary rates. Global Ecology and Biogeography 16:519528.Google Scholar
Powell, M. G. 2008. Timing and selectivity of the Late Mississippian mass extinction of brachiopod genera from the central Appalachian Basin. PALAIOS 23:525534.Google Scholar
Raymond, A. C., Kelley, P. H., and Lutken, C. B.. 1990. Dead by degrees: articulate brachiopods, paleoclimate and the mid-Carboniferous extinction event. PALAIOS 5:111123.Google Scholar
R Core Team 2015. R: a language and environment for statistical computing, Version 3.2.1. http://www.R-project.org/Google Scholar
Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.Google Scholar
Sabattini, N., Ottone, E. G., and Azcuy, C. L.. 1990. La Zona de Lissochonetes jachalensis-Streptorhynchus inaequiornatus (Carbonífero tardío) en la localidad de La Delfina, provincia de San Juan. Ameghiniana 27:7581.Google Scholar
Scarponi, D., and Kowalewski, M.. 2007. Sequence stratigraphic anatomy of diversity patterns: late Quaternary benthic mollusks of the Po plain, Italy. PALAIOS 22:296305.Google Scholar
Shi, G. R., and Waterhouse, J. B.. 2010. Late Palaeozoic global changes affecting high-latitude environments and biotas: an introduction. Palaeogeography, Palaeoclimatology, Palaeoecology 298:116.Google Scholar
Shi, G. R., Zhang, Y., Shen, S., and He, W.. 2015. Nearshore–offshore–basin species diversity and body size variation patterns in Late Permian (Changhsingian) brachiopods. Palaeogeography, Palaeoclimatology, Palaeoecology. 10.1016/j.palaeo.2015.07.046.Google Scholar
Simanauskas, T., and Cisterna, G. A.. 2001. Braquiópodos articulados de la Formación El Paso, Paleozoico Superior, Precordillera Argentina. Revista Española de Paleontología 16:209222.Google Scholar
Stanley, S. M. 2007. An analysis of the history of marine animal diversity. Paleobiology 33:155.Google Scholar
Stanley, S. M., and Powell, M. G.. 2003. Depressed rates of origination and extinction during the late Paleozoic ice age: a new state for the global marine ecosystem. Geology 31:877880.Google Scholar
Sterren, A. F. 2008. Concentraciones bioclásticas del Carbonífero–Pérmico Inferior en la Precordillera Argentina. Variaciones temporales y relación con las tendencias propuestas para el Fanerozoico. Ameghiniana 45:303320.Google Scholar
Sterren, A. F., and Cisterna, G. A.. 2010. Bivalves and brachiopods in the Carboniferous–Early Permian of Argentine Precordillera: diversification and faunal turnover in southwestern Gondwana. Geologica Acta 8:501517.Google Scholar
Taboada, A. C. 1997. Bioestratigrafía del carbonífero marino del Valle de Calingasta-Uspallata, Provincias de San Juan y Mendoza. Ameghiniana 34:215246.Google Scholar
Taboada, A. C. 2010. Mississippian–Early Permian brachiopods from western Argentina: tools for middle- to high-latitude correlation, paleobiogeographic and paleoclimatic reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 298:152173.Google Scholar
Tang, C. M., and Bottjer, D. J.. 1996. Long-term faunal stasis without evolutionary coordination: Jurassic benthic marine paleocommunities, Western Interior, United States. Geology 24:815818.Google Scholar
Tokeshi, M. 1999. Species coexistence: ecological and evolutionary perspective. Blackwell, Oxford.Google Scholar
Tomašových, A. 2006. Linking taphonomy to community-level abundance: insights into compositional fidelity of the Upper Triassic shell concentrations (eastern Alps). Palaeogeography, Palaeoclimatology, Palaeoecology 235:355381.Google Scholar
Tomašových, A., and Kidwell, S. M.. 2009. Fidelity of variation in species composition and diversity partitioning by death assemblages: time-averaging transfers diversity from beta to alpha levels. Paleobiology 35:94118.Google Scholar
Tomašových, A., and Siblík, M.. 2007. Evaluating compositional turnover of brachiopod communities during the end-Triassic mass extinction (Northern Calcareous Alps): removal of dominant groups, recovery and community reassembly. Palaeogeography, Palaeoclimatology, Palaeoecology 244:170200.Google Scholar
Tomašových, A., Dominici, S., Zuschin, M., and Merle, D.. 2014. Onshore–offshore gradient in metacommunity turnover emerges only over macroevolutionary time-scales. Proceedings of the Royal Society B: Biological Sciences 281:20141533.Google Scholar
Tuomisto, H. 2010. A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography 33:2345.Google Scholar
Veech, J. A., Summerville, K. S., Crist, T. O., and Gering, J. C.. 2002. The additive partitioning of species diversity: recent revival of an old idea. Oikos 99:39.Google Scholar
Veevers, J. J., and Powell, C. M.. 1987. Late Paleozoic glacial in Gondwanaland reflected in transgressive–regressive depositional sequences in Euramerica. Geological Society of America Bulletin 98:475487.Google Scholar
Warton, D. I., Wright, S. T., and Wang, Y.. 2012. Distance-based multivariate analyses confound location and dispersion effects. Methods in Ecology and Evolution 3:89101.Google Scholar
Waterhouse, J. B., and Shi, G. R.. 2013. Climatic implications from the sequential changes in diversity and biogeographic affinities for brachiopods and bivalves in the Permian of eastern Australia and New Zealand. Gondwana Research 24:139147.Google Scholar
Whittaker, R. H. 1960. Vegetation of the Siskiyou mountains, Oregon and California. Ecological Monographs 30:279338.Google Scholar
Whittaker, R. H. 1972. Evolution and measurement of species diversity. Taxon 21:213251.Google Scholar