Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T11:16:11.421Z Has data issue: false hasContentIssue false

Comparing cal3 and other a posteriori time-scaling approaches in a case study with the pterocephaliid trilobites

Published online by Cambridge University Press:  05 December 2016

David W. Bapst
Affiliation:
Department of Earth & Planetary Sciences, University of California, Davis, One Shields Avenue, Davis, California 95616-8605, U.S.A. South Dakota School of Mines and Technology, 501 E. St. Joseph, Rapid City, South Dakota 57701, U.S.A. E-mail: [email protected]
Melanie J. Hopkins
Affiliation:
Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, U.S.A. E-mail: [email protected]

Abstract

Reconstructing the tree of life involves more than identifying relationships among lineages; it also entails accurately estimating when lineages diverged. Paleontologists typically scale cladograms to time a posteriori by direct reference to first appearances of taxa in the stratigraphic record. Some approaches use probabilistic models of branching, extinction, and sampling processes to date samples of trees, such as the recently developed cal3 method, which stochastically draws divergence dates given a set of rates for those processes. However, these models require estimates of the rates of those processes, which may be hard to obtain, particularly for sampling. Here, we contrast the use of cal3 and other a posteriori time-scaling approaches by examining a previous study that documented a decelerating rate of morphological evolution in pterocephaliid trilobites. Although aspects of the data set make estimation of branching, extinction, and sampling rates difficult, we use a multifaceted approach to calculate and evaluate the rate estimates needed for applying cal3. In agreement with previous simulation studies, we find that the choice of phylogenetic dating method impacts downstream macroevolutionary conclusions. We also find contradictory evolutionary inferences between analyses on ancestor–descendant contrasts (based on ancestor trait reconstruction methods) and maximum-likelihood parameter estimates. Ancestral taxon inference in cal3 corroborates previously hypothesized ancestor–descendant sequences, but cal3 suggests greater support for budding cladogenesis than anagenesis. This case study demonstrates the potential and wide applicability of the cal3 method and the benefits afforded by choosing cal3 over simpler a posteriori time-scaling approaches.

Type
Articles
Copyright
Copyright © 2016 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alba, D. M., Agustí, J., and Moyà-Solà, S.. 2001. Completeness of the mammalian fossil record in the Iberian Neogene. Paleobiology 27:7983.2.0.CO;2>CrossRefGoogle Scholar
Alroy, J. 2000. Understanding the dynamics of trends within evolving lineages. Paleobiology 26:319329.2.0.CO;2>CrossRefGoogle Scholar
Bapst, D. W. 2012. paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods in Ecology and Evolution 3:803807.CrossRefGoogle Scholar
Bapst, D. W. 2013a. A stochastic rate-calibrated method for time-scaling phylogenies of fossil taxa. Methods in Ecology and Evolution 4:724733.CrossRefGoogle Scholar
Bapst, D. W. 2013b. When can clades be potentially resolved with morphology? PLoS ONE 8:e62312.CrossRefGoogle ScholarPubMed
Bapst, D. W. 2014. Assessing the effect of time-scaling methods on phylogeny-based analyses in the fossil record. Paleobiology 40:331351.CrossRefGoogle Scholar
Bapst, D. W., Wright, A. M., Matzke, N. J., and Lloyd, G. T.. 2016. Topology, divergence dates, and macroevolutionary inferences vary between different tip-dating approaches applied to fossil theropods (Dinosauria). Biology Letters 12(7): 20160237. doi: 10.1098/rsbl.2016.0237.CrossRefGoogle ScholarPubMed
Bates, K. T., Mannion, P. D., Falkingham, P. L., Brusatte, S. L., Hutchinson, J. R., Otero, A., Sellers, W. I., Sullivan, C., Stevens, K. A., and Allen, V.. 2016. Temporal and phylogenetic evolution of the sauropod dinosaur body plan. Open Science 3(3): 150636. doi: 10.1098/rsos.150636.Google ScholarPubMed
Bell, M. A., and Lloyd, G. T.. 2015. strap: an R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. Palaeontology 58:379389.CrossRefGoogle Scholar
Betancur-R, R., Ortí, G., and Pyron, R. A.. 2015. Fossil-based comparative analyses reveal ancient marine ancestry erased by extinction in ray-finned fishes. Ecology Letters 18:441450.CrossRefGoogle ScholarPubMed
Blomberg, S. P., Garland, T. J., and Ives, A. R.. 2003. Testing for Phylogenetic Signal in Comparative Data: Behavioral Traits Are More Labile. Evolution 57:717745.Google ScholarPubMed
Bokma, F., Godinot, M., Maridet, O., Ladevèze, S., Costeur, L., Solé, F., Gheerbrant, E., Peigné, S., Jacques, F., and Laurin, M.. 2016. Testing for Depéret’s rule (body size increase) in mammals using combined extinct and extant data. Systematic Biology 65:98108.CrossRefGoogle ScholarPubMed
Brocklehurst, N. 2016. Rates and modes of body size evolution in early carnivores and herbivores: a case study from Captorhinidae. PeerJ 4:e1555.CrossRefGoogle ScholarPubMed
Brusatte, S. L., Benton, M. J., Ruta, M., and Lloyd, G. T.. 2008. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. Science 321:14851488.CrossRefGoogle ScholarPubMed
Butler, R. J., and Goswami, A.. 2008. Body size evolution in Mesozoic birds: little evidence for Cope’s rule. Journal of Evolutionary Biology 21:16731682.CrossRefGoogle ScholarPubMed
Clavel, J., Escarguel, G., and Merceron, G.. 2015. mvmorph: an R package for fitting multivariate evolutionary models to morphometric data. Methods in Ecology and Evolution 6:13111319.CrossRefGoogle Scholar
Close, Roger A., Friedman, M., Lloyd, Graeme T., and Benson, Roger B. J.. 2015. Evidence for a mid-Jurassic adaptive radiation in mammals. Current Biology 25:21372142.CrossRefGoogle ScholarPubMed
Cody, R. D., Levy, R. H., Harwood, D. M., and Sadler, P. M.. 2008. Thinking outside the zone: high-resolution quantitative diatom biochronology for the Antarctic Neogene. Palaeogeography, Palaeoclimatology, Palaeoecology 260:92121.CrossRefGoogle Scholar
Eiting, T., and Gunnell, G.. 2009. Global completeness of the bat fossil record. Journal of Mammalian Evolution 16:151173.CrossRefGoogle Scholar
Etienne, R. S., and Rosindell, J.. 2012. Prolonging the past counteracts the pull of the present: protracted speciation can explain observed slowdowns in diversification. Systematic Biology 61:204213.CrossRefGoogle ScholarPubMed
Ezard, T. H. G., Aze, T., Pearson, P. N., and Purvis, A.. 2011. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332:349351.CrossRefGoogle ScholarPubMed
Ezard, T. H. G., Pearson, P. N., Aze, T., and Purvis, A.. 2012. The meaning of birth and death (in macroevolutionary birth–death models). Biology Letters 8:139142.CrossRefGoogle ScholarPubMed
Finarelli, J. A., and Flynn, J. J.. 2006. Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record. Systematic Biology 55:301313.CrossRefGoogle ScholarPubMed
Fisher, D. C. 2008. Stratocladistics: integrating temporal data and character data in phylogenetic inference. Annual Review of Ecology, Evolution, and Systematics 39:365385.CrossRefGoogle Scholar
Fischer, V., Bardet, N., Benson, R. B. J., Arkhangelsky, M. S., and Friedman, M.. 2016. Extinction of fish-shaped marine reptiles associated with reduced evolutionary rates and global environmental volatility. Nature Communications 7:10825. doi: 10.1038/ncomms10825.CrossRefGoogle ScholarPubMed
Foote, M. 1996. On the probability of ancestors in the fossil record. Paleobiology 22:141151.CrossRefGoogle Scholar
Foote, M. 1997. Estimating taxonomic durations and preservation probability. Paleobiology 23:278300.CrossRefGoogle Scholar
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. Pp. 74102 in D. H. Erwin, and S. L. Wing, eds. Deep time: paleobiology’s perspective. Paleontological Society, Lawrence, Kans.Google Scholar
Foote, M. 2001. Inferring temporal patterns of preservation, origination, and extinction from taxonomic survivorship analysis. Paleobiology 27:602630.2.0.CO;2>CrossRefGoogle Scholar
Foote, M., and Raup, D. M.. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121140.CrossRefGoogle ScholarPubMed
Foote, M., and Sepkoski, J. J.. 1999. Absolute measures of the completeness of the fossil record. Nature 398:415417.CrossRefGoogle ScholarPubMed
Foote, M., Hunter, J. P., Janis, C. M., and Sepkoski, J. J. Jr. 1999. Evolutionary and preservational constraints on origins of biologic groups: divergence times of eutherian mammals. Science 283:13101314.CrossRefGoogle ScholarPubMed
Friedman, M., and Brazeau, M. D.. 2011. Sequences, stratigraphy, and scenarios: what can we say about the fossil record of the earliest tetrapods? Proceedings of the Royal Society of London B 278:432439.Google ScholarPubMed
Gavryushkina, A., Welch, D., Stadler, T., and Drummond, A. J.. 2014. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Computational Biology 10:e1003919.CrossRefGoogle ScholarPubMed
Gradstein, F. M., Ogg, G., and Schmitz, M.. 2012. The Geologic Time Scale 2012. Elsevier, Oxford.Google Scholar
Halliday, T. J. D., and Goswami, A.. 2016a. Eutherian morphological disparity across the end-Cretaceous mass extinction. Biological Journal of the Linnean Society 118:152168.CrossRefGoogle Scholar
Halliday, T. J. D., and Goswami, A.. 2016b. The impact of phylogenetic dating method on interpreting trait evolution: a case study of Cretaceous–Palaeogene eutherian body-size evolution. Biology Letters 12(8): 20160051. doi: 10.1098/rsbl.2016.0051.CrossRefGoogle ScholarPubMed
Heath, T. A., Huelsenbeck, J. P., and Stadler, T.. 2014. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proceedings of the National Academy of Sciences USA 111:E2957E2966.CrossRefGoogle ScholarPubMed
Holland, S. M. 2003. Confidence limits on fossil ranges that account for facies changes. Paleobiology 29:468479.2.0.CO;2>CrossRefGoogle Scholar
Holland, S. M. 2016. The non-uniformity of fossil preservation. Philosophical Transactions of the Royal Society of London B 371(1699): 20150130. doi: 10.1098/rstb.2015.0130.CrossRefGoogle ScholarPubMed
Hopkins, M. J. 2011a. How species longevity, intraspecific morphological variation, and geographic range size are related: a comparison using Late Cambrian trilobites. Evolution 65:32533273.CrossRefGoogle ScholarPubMed
Hopkins, M. J. 2011b. Species-level phylogenetic analysis of pterocephaliids (Trilobita, Cambrian) from the Great Basin, western USA. Journal of Paleontology 85:11281153.CrossRefGoogle Scholar
Hopkins, M. J. 2013a. Data from: Decoupling of taxonomic diversity and morphological disparity during decline of the Cambrian trilobite family Pterocephaliidae. Dryad Digital Repository. http://dx.doi.org/10.5061/dryad.f5667.CrossRefGoogle Scholar
Hopkins, M. J. 2013b. Decoupling of taxonomic diversity and morphological disparity during decline of the Cambrian trilobite family Pterocephaliidae. Journal of Evolutionary Biology 26:16651676.CrossRefGoogle ScholarPubMed
Hopkins, M. J. 2016. Magnitude versus direction of change and the contribution of macroevolutionary trends to morphological disparity. Biological Journal of the Linnean Society 118:116130.CrossRefGoogle Scholar
Hopkins, M. J., and Smith, A. B.. 2015. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Proceedings of the National Academy of Sciences USA 112:37583763.CrossRefGoogle ScholarPubMed
Hunt, G., and Carrano, M. T.. 2010. Models and methods for analyzing phenotypic evolution in lineages and clades. Pp. 245269 in J. Alroy, and G. Hunt, eds. Short Course on Quantitative Methods in Paleobiology. Paleontological Society, New Haven, Conn.Google Scholar
Kendall, D. G. 1948. On the generalized “birth-and-death” process. Annals of Mathematical Statistics 19(1): 115.CrossRefGoogle Scholar
Laurin, M. 2004. The evolution of body size, Cope’s rule and the origin of amniotes. Systematic Biology 53:594622.CrossRefGoogle ScholarPubMed
Lee, M. S. Y., Cau, A., Naish, D., and Dyke, G. J.. 2014. Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science 345:562566.CrossRefGoogle ScholarPubMed
Losos, J. B. 2011. Seeing the forest for the trees: the limitations of phylogenies in comparative biology. American Naturalist 177:709727.CrossRefGoogle ScholarPubMed
Ludvigsen, R., and Westrop, S. R.. 1985. Three new Upper Cambrian stages for North America. Geology 13:139143.2.0.CO;2>CrossRefGoogle Scholar
Nee, S. 2006. Birth–death models in macroevolution. Annual Review of Ecology, Evolution, and Systematics 37:117.CrossRefGoogle Scholar
Nee, S., Mooers, A. O., and Harvey, P. H.. 1992. Tempo and mode of evolution revealed from molecular phylogenies. Proceedings of the National Academy of Sciences USA 89:83228326.CrossRefGoogle ScholarPubMed
Norell, M. A. 1992. Taxic origin and temporal diversity: the effect of phylogeny. Pp. 89118 in M. J. Novacek, and Q. D. Wheeler, eds. Extinction and phylogeny. Columbia University Press, New York.Google Scholar
Palmer, A. R. 1962. Glyptagnostus and associated trilobites in the United States. U.S. Geological Survey Professional Paper 374-F.CrossRefGoogle Scholar
Palmer, A. R. 1965. Trilobites of the late Cambrian Pterocephaliid biomere in the Great Basin, United States. U.S. Geological Survey Professional Paper 493.Google Scholar
Paradis, E., Claude, J., and Strimmer, K.. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289290.Google Scholar
Pennell, M. W., Harmon, L. J., and Uyeda, J. C.. 2014. Is there room for punctuated equilibrium in macroevolution? Trends in Ecology and Evolution 29:2332.CrossRefGoogle ScholarPubMed
Peters, S. E., and Foote, M.. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.2.0.CO;2>CrossRefGoogle Scholar
Puttick, M. N., Thomas, G. H., and Benton, M. J.. 2016. Dating Placentalia: morphological clocks fail to close the molecular fossil gap. Evolution 70:873886.CrossRefGoogle ScholarPubMed
Pyron, R. A. 2011. Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Systematic Biology 60:466481.CrossRefGoogle ScholarPubMed
R Core Team. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Raup, D. M. 1985. Mathematical models of cladogenesis. Paleobiology 11:4252.CrossRefGoogle Scholar
Raup, D. M., Gould, S. J., Schopf, T. J. M., and Simberloff, D. S.. 1973. Stochastic models of phylogeny and the evolution of diversity. Journal of Geology 81:525542.Google Scholar
Ronquist, F., Klopfstein, S., Vilhelmsen, L., Schulmeister, S., Murray, D. L., and Rasnitsyn, A. P.. 2012. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Systematic Biology 61:973999.CrossRefGoogle Scholar
Ruta, M., Wagner, P. J., and Coates, M. I.. 2006. Evolutionary patterns in early tetrapods. I. Rapid initial diversification followed by decrease in rates of character change. Proceedings of the Royal Society of London B 273:21072111.Google Scholar
Sadler, P. M. 2007. Constrained optimization approaches to the paleobiologic correlation and seriation problem. Part II: a reference manual to the CONOP program family. http://www.springer.com/us/book/9781402014437.Google Scholar
Sadler, P. M., Kemple, W. G., and Kooser, M. A.. 2003. Contents of the compact disc: CONOP9 programs for solving the stratigraphic correlation and seriation problems as constrained optimization. In P. J. Harries, ed. Approaches in high-resolution stratigraphic paleontology. Topics in Geobiology 21. Kluwer Academic, Dordrecht, Netherlands.Google Scholar
Schluter, D., Price, T., Mooers, A. O., and Ludwig, D.. 1997. Likelihood of ancestor states in adaptive radiation. Evolution 51:16991711.Google Scholar
Sepkoski, J. J. 1998. Rates of speciation in the fossil record. Philosophical Transactions of the Royal Society of London B 353:315326.CrossRefGoogle ScholarPubMed
Silvestro, D., Schnitzler, J., Liow, L. H., Antonelli, A., and Salamin, N.. 2014. Bayesian estimation of speciation and extinction from incomplete fossil occurrence data. Systematic Biology 63:349367.CrossRefGoogle ScholarPubMed
Slater, G. J., and Pennell, M. W.. 2014. Robust regression and posterior predictive simulation increase power to detect early bursts of trait evolution. Systematic Biology 63:293308.CrossRefGoogle ScholarPubMed
Smith, A. B. 1994. Systematics and the fossil record: documenting evolutionary patterns. Blackwell Scientific, Oxford.CrossRefGoogle Scholar
Solow, A. R., and Smith, W.. 1997. On fossil preservation and the stratigraphic ranges of taxa. Paleobiology 23:271277.CrossRefGoogle Scholar
Soul, L. C., and Friedman, M.. 2015. Taxonomy and phylogeny can yield comparable results in comparative paleontological analyses. Systematic Biology 64:608620.CrossRefGoogle ScholarPubMed
Stadler, T. 2010. Sampling-through-time in birth-death trees. Journal of Theoretical Biology 267:396404.CrossRefGoogle ScholarPubMed
Stadler, T., and Yang, Z.. 2013. Dating phylogenies with sequentially sampled tips. Systematic Biology 62:674688.CrossRefGoogle ScholarPubMed
Stanley, S. M. 1979. Macroevolution: patterns and process. Freeman, San Francisco.Google Scholar
Starrfelt, J., and Liow, L. H.. 2016. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model. Philosophical Transactions of the Royal Society of London B 371(1691): 20150219. doi: 10.1098/rstb.2015.0219.CrossRefGoogle ScholarPubMed
Strauss, D. J., and Sadler, P. M.. 1989. Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Mathematical Geology 21:411427.CrossRefGoogle Scholar
Tomiya, S. 2013. Body size and extinction risk in terrestrial mammals above the species level. American Naturalist 182:E196E214.CrossRefGoogle ScholarPubMed
Vandenberg, A. H. M. 2003. Discussion of “Gisbornian (Caradoc) graptolites from New South Wales, Australia: systematics, biostratigraphy and evolution” by B. Rickards, L. Sherwin and P. Williamson. Geological Journal 38:175179.Google Scholar
Wagner, P. J., and Erwin, D. H.. 1995. Phylogenetic patterns as tests of speciation models. Pp. 87122 in D. H. Erwin, and R. L. Anstey, eds. New approaches to speciation in the fossil record. Columbia University Press, New York.Google Scholar
Wagner, P. J., and Marcot, J. D.. 2010. Probabilistic phylogenetic inference in the fossil record: current and future applications. Pp. 189211. in J. Alroy, and G. Hunt, eds. Short Course on Quantitative Methods in Paleobiology. Paleontological Society, New Haven, Conn.Google Scholar
Wagner, P. J., and Marcot, J. D.. 2013. Modelling distributions of fossil sampling rates over time, space and taxa: assessment and implications for macroevolutionary studies. Methods in Ecology and Evolution 4:703713.CrossRefGoogle Scholar
Wright, A. M., Lloyd, G. T., and Hillis, D. M.. 2016. Modeling character change heterogeneity in phylogenetic analyses of morphology through the use of priors. Systematic Biology 65:602611.CrossRefGoogle ScholarPubMed
Zanno, L. E., and Makovicky, P. J.. 2013. No evidence for directional evolution of body mass in herbivorous theropod dinosaurs. Proceedings of the Royal Society of London B 280(1751): 20122526. doi: 10.1098/rspb.2012.2526.Google ScholarPubMed
Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A., and Ronquist, F.. 2016. Total-evidence dating under the fossilized birth–death process. Systematic Biology 65:228249.CrossRefGoogle ScholarPubMed