Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-18T21:19:06.324Z Has data issue: false hasContentIssue false

Comparative dental microwear of ruminant and perissodactyl molars: Implications for paleodietary analysis of rare and extinct ungulate clades

Published online by Cambridge University Press:  09 November 2015

Matthew C. Mihlbachler
Affiliation:
Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568 Division of Paleontology, American Museum of Natural History, Central Park West at 79th St. 10024, U.S.A. Email: [email protected]
Daniel Campbell
Affiliation:
Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568
Michael Ayoub
Affiliation:
Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568
Charlotte Chen
Affiliation:
Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568
Ishrat Ghani
Affiliation:
Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568

Abstract

Dental microwear analyses of ungulates and other large herbivores rely on correlations of diet and microwear among extant ungulates, primarily ruminants. Microwear is considered a ‘taxon-free’ method of paleodietary analysis. The properties of food are associated with causality of microwear, but the possibility that heritable properties of the consumer (tooth morphologies, masticatory dynamics, enamel mechanical properties, digestive physiologies) may introduce bias is not considered. Using an observer blind method of light microscopy, we examined the distribution of microwear features on the molars of eight species of ruminants and perissodactyls. Grazing and browsing ruminants had statistically different numbers of scratches forming discrete data clusters. Perissodactyls differ in the numbers of scratches and pits but without discrete browser and grazer clusters. Microwear features were distributed homogeneously across ruminant molars and strongly predictive of diet from the labial edge of the molar to the lingual edge. Microwear was heterogeneously distributed across perissodactyl molars with more pits on the labial edge and more scratches on the lingual edge. In perissodactyls, microwear sampled from the labial edge was strongly predictive of diet, while microwear sampled from other areas were not. Discriminant function analyses of microwear assigned individual molars to diets (browser and grazer) and clades (ruminant and perissodactyl) with similar success (70–73%) indicating that phylogeny and diet influence microwear equally. Rhino microwear was more sensitive to clade membership while other perissodactyl microwear was more sensitive to diet. Although it is not clear what heritable variables may phylogenetically bias dental microwear, extant ruminants may not be appropriate models for the microwear of other large herbivores.

Type
Articles
Copyright
Copyright © 2015 The Paleontological Society. All rights reserved. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature cited

Andrews, P., and Hixson, S.. 2014. Taxon-free methods of palaeoecology. Annales Zoologici Fennici 51:269284.CrossRefGoogle Scholar
Archer, D., and Sanson, G.. 2002. Form and function of the selenodont molar in southern African ruminants in relation to their feeding habits. Journal of Zoology, London 257:1326.CrossRefGoogle Scholar
Billet, G., Blondel, C., and de Muizon, C.. 2009. Dental microwear analysis of notoungulates (Mammalia) from Salla (Late Oligocene, Bolivia) and discussion on their precocious hypsodonty. Palaeogeography, Palaeoclimatology, Palaeoecology 274:114124.CrossRefGoogle Scholar
Boisserie, J. R., Zazzo, A., Merceron, G., Blondel, C., Vignaud, P., Likius, A., Mackaye, H. T., and Brunet, M.. 2005. Diets of modern and late Miocene hippopotamids: Evidence from carbon isotope composition and micro-wear of tooth enamel. Palaeogeography, Palaeoclimatology, Palaeoecology 221:153174.CrossRefGoogle Scholar
Bonin, S. J., Clayton, H. M., Lanovaz, J. L., and Johnston, T.. 2007. Comparison of mandibular motion in horses chewing hay and pellets. Equine Verterinary Journal 39:258262.CrossRefGoogle ScholarPubMed
Boyde, A., and Fortelius, M.. 1986. Development, structure and function of rhinoceros enamel. Zoological Journal of the Linnean Society 87:181214.CrossRefGoogle Scholar
Butler, P. M. 1952. The milk molars of Perissodactyla, with remarks on molar occlusion. Proceedings of the Zoological Society of London 121:777817.CrossRefGoogle Scholar
Calandra, I., Göhlich, U. B., and Merceron, G.. 2008. How could sympatric megaherbivores coexist? Example of niche partitioning within a proboscidean community from the Miocene of Europe. Naturwissenschaften 95:831838.CrossRefGoogle ScholarPubMed
Calandra, I., Göhlich, U. B., and Merceron, G.. 2010. Feeding preferences of Gomphotherium subtapiroideum (Proboscidea, Mammalia) from the Miocene of Sandelzhausen (Northern Alpine Foreland Basin, southern Germany) through life and geological time: evidence from dental microwear analysis. Palaeontologische Zeitschrift 84:205215.CrossRefGoogle Scholar
Calandra, I., Schulz, E., Pinnow, M., Krohn, S., and Kaiser, T.. 2012. Teasing apart the contributions of hard dietary items on 3D dental microtextures in primates. Journal of Human Evolution 63:8598.CrossRefGoogle ScholarPubMed
Campbell, S., Cuozzo, F. P., Sauther, M. L., Sponheimer, M., and VL., F. 2012. Nanoindentation of lemur enamel: An ecological investigation of mechanical property variations within and between sympatric species. American Journal of Physical Anthropology 148:178190.CrossRefGoogle ScholarPubMed
Christensen, H. B. 2014. Similar association of tooth microwear and morphology indicate similar diet across marsupial and placental mammals. PLoS ONE 9(8):e102789. doi: 10.1371/journal.pone.0102789.CrossRefGoogle ScholarPubMed
Clauss, M., Frey, R., Kiefer, B., Lechner-Doll, M., Loehlein, W., Polster, C., Rössner, G. E., and Streich, W. J.. 2003. The maximum attainable body size of herbivorous mammals: morphophysiological constraints on foregut, and adaptations of hindgut fermenters. Ecophysiology 136:1427.Google ScholarPubMed
Clauss, M., and Hummel, J.. 2005. The digestive performance of mammalian herbivores: why big may not be that much better. Mammal Review 35:174187.CrossRefGoogle Scholar
Clauss, M., Kaiser, T., and Hummel, J.. 2008. The morphophysiological adaptations of browsing and grazing mammals. Pp. 4788in I. J. Gordon, and H. H. T. Prins, eds. The Ecology of Browsing and Grazing. Springer, Berlin.CrossRefGoogle Scholar
Clauss, M., and Lechnew-Doll, M.. 2002. Faecal particle size distribution in captive wild ruminants: an approach to the browser/grazer dichotomy from the other end. Oecologia 131:343349.CrossRefGoogle Scholar
Constantino, P., Lee-Thorp, J. A., Gerbig, Y., Hartstone-Rose, A., Talebi, M., Lawn, B., and Lucas, P. W.. 2012. The role of tooth enamel mechanical properties in primate dietary adaptation. American Journal of Physical Anthropology 148:171177.CrossRefGoogle ScholarPubMed
Damuth, J., and Janis, C. M.. 2011. On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology. Biological Reviews 86:733758.CrossRefGoogle ScholarPubMed
Damuth, J., and Janis, C. M.. 2014. A comparison of observed molar wear rates in extant herbivorous mammals. Annales Zoologici Fennici 51:188200.CrossRefGoogle Scholar
DeMiguel, D., Alba, D. M., and Moyá-Solá, S.. 2014. Dietary specialization during the evolution of western Eurasian hominoids and the extinction of European great apes. PLoS ONE 9(5 e97442): 113. doi: 10.1371/journal.pone.0097442.CrossRefGoogle ScholarPubMed
DeMiguel, D., Fortelius, M., Azanza, B., and Morales, J.. 2008. Ancestral feeding state of ruminants reconsidered: earliest grazing adaptation claims a mixed condition for Cervidae. BMC Evolutionary Biology 8:13. doi:10.1186/1471-2148-8-13.CrossRefGoogle ScholarPubMed
DeSantis, L. R. G., Schubert, B., Scott, J. R., and Ungar, P. S.. 2012. Implications of diet for the extinction of saber-toothed cats and American lions. PLoS ONE 7(12):e52453.CrossRefGoogle ScholarPubMed
Donohue, S. L., DesSantis, L. R. G., Schubert, B. W., and Ungar, P. S.. 2013. Was the giant short-faced bear a hyper-scavenger? A new approach to the dietary study of ursids using dental microwear textures. PLoS ONE 8(10):e77531. doi: 10.1371/journal.pone.0052453.CrossRefGoogle Scholar
Duncan, A. J., and Poppi, D. P.. 2008. Nutritional ecology of browsing and grazing ruminants. Pp. 89116in I. J. Gordon, and H. H. T. Prins, eds. The Ecology of Browsing and Grazing. Springer, Berlin.CrossRefGoogle Scholar
El-Zaatari, S. 2010. Occlusal microwear texture analysis and the diets of historical/prehistoric hunter-gatherers. International Journal of Osteoarchaeology 20:6787.CrossRefGoogle Scholar
Erickson, K. L. 2014. Prairie grass phytolith hardness and the evolution of ungulate hypsodonty. Historical Biology 26:737744.CrossRefGoogle Scholar
Evans, A. R., and Janis, C. M.. 2014. The evolution of high dental complexity in the horse lineage. Annales Zoologici Fennici 51:7379.CrossRefGoogle Scholar
Fahlke, J. M., Bastl, K. A., Semprebon, G. M., and Gingerich, P. D.. 2013. Paleoecology of archaeocete whales throughout the Eocene: Dietary adaptations revealed by microwear analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 386:690701.CrossRefGoogle Scholar
Fortelius, M. 1981. Functional aspects of occlusal cheek-tooth morphology in hypsodont, non-ruminant ungulates. Pp. 153162in J. Martinell, ed. International Symposium on Concept and Method in Paleontology. Departament de Paleontologia, Universitat de Barcelona.Google Scholar
Fortelius, M. 1984. Vertical decussation of enamel prisms in lophodont ungulates. Pp. 427431in R. W. Fearnhead, and S. Suga, eds. Tooth Enamel IV. Elsevier.Google Scholar
Fortelius, M., and Solounias, N.. 2000. Functional characterization of ungulate molars using the abrasion-attrision wear gradient: a new method for reconstructing paleodiets. American Museum Novitates 3301:136.2.0.CO;2>CrossRefGoogle Scholar
Fraser, D., and Rybczynski, N.. 2014. Complexity of ruminant masticatory evolution. Journal of Morphology 275(10):10931102.CrossRefGoogle ScholarPubMed
Fraser, D., and Theodor, J. M.. 2013. Ungulate diets reveal patterns of grassland evolution in North America. Palaeogeography, Palaeoclimatology, Palaeoecology 369:409421.CrossRefGoogle Scholar
Garamszegi, L. Z. 2014. Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology: Concepts and Practice. Springer, Berlin.CrossRefGoogle Scholar
Gordon, K. D. 1982. A study of microwear on chimpanzee molars: implications for dental microwear analysis. American Journal of Physical Anthropology 59:195215.CrossRefGoogle ScholarPubMed
Gordon, K. D. 1988. A review of methodology and quantification in dental microwear analysis. Scanning Microscopy 2:11391147.Google ScholarPubMed
Green, J. L., and Resar, R. N. A.. 2012. The link between dental microwear and feeding ecology in tree sloths and armadillos. Biological Journal of the Linnean Society 107:277294.CrossRefGoogle Scholar
Green, J. L., Semprebon, G. M., and Solounias, N.. 2005. Reconstructing the palaeodiet of Florida Mammut americanum via low-magnification steromicroscopy. Palaeogeography, Palaeoclimatology, Palaeoecology 223:3448.CrossRefGoogle Scholar
Grenet, E., Martin-Rosset, W., and Chenost, M.. 1984. Compared size and structure of plant particles in the horse and sheep feces. Canadian Journal of Animal Science 64 (Suppl): 345346.CrossRefGoogle Scholar
Grine, F. E., Sponheimer, M., Lee-Thorp, J. A., and Teaford, M. F.. 2012. Dental microwear and stable isotopes inform paleoecology of extinct hominins. American Journal of Physical Anthropology 148:285317.CrossRefGoogle ScholarPubMed
Grine, F. E., Ungar, P. S., Teaford, M. F., and El-Zaatari, S.. 2013. Molar microwear, diet and adaptation in a purported hominin species lineage from the Pliocene of East Africa. Pp. 213223in K. E. Reed, J. G. Fleagle, and M. G. Leakey, eds. The Paleobiology of Australopithecus. Springer, New York.CrossRefGoogle Scholar
Gügel, I. L., Grupe, G., and Kunzelmann, K.-H.. 2001. Simulation of dental microwear: Characteristic traces of opal phytoliths give clues to ancient human dietary behavior. American Journal of Physical Anthropology 114:124138.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Hager, S., Mihlbachler, M. C., and Beatty, B. L.. 2014. Indentation hardness of tooth enamel of multiple mammalian species and the role of enamel microstructure on dental wear mechanics. Journal of Vertebrate Paleontology Abstracts of Papers 74th Annual Meeting: 143.Google Scholar
Homchaudhuri, A., Mihlbachler, M. C., and Solounias, N.. 2010. Dental microwear analysis of Eocene Brontotheriioidea and implications for paleodietary interpretations of long extinct species. Journal of Vertebrate Paleontology Abstracts of Papers 70th Annual Meeting: 107A.Google Scholar
Hammer, O., and Harper, D.. 2006. Paleontological Data Analysis. Blackwell, Malden MA.Google Scholar
Hayek, L.-A. C., Bernor, R. L., Solounias, N., and Steigerwald, P.. 1992. Preliminary studies of hipparionine horse diet as measured by tooth microwear. Annales Zoologici Fennici 28:187200.Google Scholar
Healy, W. B., and Ludwig, T. G.. 1965. Ingestion of soil by sheep in New Zealand in relation to wear of teeth. Nature 208:806807.CrossRefGoogle ScholarPubMed
Heywood, J. J. N. 2010. Explaining patterns in modern ruminant diversity: contingency or constraint? Biological Journal of the Linnean Society 99:657672.CrossRefGoogle Scholar
Hoffmann, J., Fraser, D., and Clementz, M. T.. 2015. Controlled feeding trials with ungulates: A new application of in vivo dental molding to assess the abrasive factors of microwear. Journal of Experimental Biology 218:15381547.Google Scholar
Hunter, J. P., and Fortelius, M.. 1994. Comparative dental occlusal morphology, facet development, and microwear in two sympatric species of Listriodon (Mammalia: Suidae) from the middle Miocene of western Anatolia (Turkey). Journal of Vertebrate Paleontology 14:105126.CrossRefGoogle Scholar
Janis, C. M. 1979. Mastication in the hyrax and its relevance to ungulate dental evolution. Paleobiology 5:5059.CrossRefGoogle Scholar
Janis, C. M. 2008. An evolutionary history of browsing and grazing ungulates. Pp. 2145in I. J. Gordon, and H. H. T. Prins, eds. The Ecology of Browsing and Grazing. Springer, Berlin.CrossRefGoogle Scholar
Joomun, S. C., Hooker, J. J., and Collinson, M. E.. 2008. Dental wear variation and implications for diet: An example for Eocene perissodactyls (Mammalia). Palaeogeography, Palaeoclimatology, Palaeoecology 263:92106.CrossRefGoogle Scholar
Kaiser, T., Fickel, J., Streich, W. J., Hummel, J., and Clauss, M.. 2010. Enamel ridge alignment in upper molars of ruminants in relation to their natural diet. Journal of Zoology 281:1225.CrossRefGoogle Scholar
Kay, R. F., and Hiiëmae, K.. 1974. Jaw movement and tooth use in recent and fossil primates. American Journal of Physical Anthropology 40:227256.CrossRefGoogle ScholarPubMed
King, T., Andrews, P., and Boz, B.. 1999. Effect of taphonomic processes on dental microwear. American Journal of Physical Anthropology 108:359373.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Koenigswald, W. v. 1997. Brief survey of enamel diversity at the schmelzmuster level in Cenozoic placental mammals. Pp. 137161in W. v. Koenigswald, and P. M. Sander, eds. Tooth Enamel Microstructure. A.A. Balkema, Rotterdam.Google Scholar
Koenigswald, W. v. 2014. Mastication and wear in Lophiodon (Perissodactyla, Mammalia) compared with lophodont dentitions in some other mammals. Annales Zoologici Fennici 15:162176.CrossRefGoogle Scholar
Koenigswald, W. v., Anders, U., Engels, S., Schultz, J. A., and Kullmer, O. 2013. Jaw movement in fossil mammals: analysis, description and visualization. Paläontologische Zeitschrift 87:141159.CrossRefGoogle Scholar
Koenigswald, W. V., Holbrook, L. T., and Rose, K. D.. 2011. Diversity and evolution of Hunter-Schreger band configuration in tooth enamel of perissodactyl mammals. Acta Palaeontologica Polonica 56:1132.CrossRefGoogle Scholar
Krueger, K. L., Scott, J. R., Kay, F. R., and Ungar, P. S.. 2008. Technical note: Dental microwear textures of “Phase I” and “Phase II” facets. American Journal of Physical Anthropology 137:485490.CrossRefGoogle ScholarPubMed
Lucas, P. W., Omar, R., Al-Fadhalah, K., Almusallam, A. S., Henry, A. G., Michael, S., Thai, L. A., Watzke, J., Strait, D. S., and Atkins, A.. 2013. Mechanisms and causes of wear in tooth enamel: implications for hominin diets. Journal of the Royal Society Interface 10:20120923. doi: 10.1098/rsif.2012.0923.CrossRefGoogle ScholarPubMed
Lucas, P. W., van Casteren, A., and Al-Fadhalah, K.. 2014. The role of dust, grit, and phytoliths in tooth wear. Annales Zoologici Fennici 51:143152.CrossRefGoogle Scholar
Ludwig, T. G., Healy, W. B., and Cutress, T. W.. 1966. Wear of sheep’s teeth. III. Seasonal variation in wear and ingested soil. New Zealand Journal of Agricultural Research 9:157164.CrossRefGoogle Scholar
Maas, M. C. 1991. Enamel structure and microwear: An experimental study of the response of enamel to shearing force. American Journal of Physical Anthropology 85:3149.CrossRefGoogle ScholarPubMed
Maas, M. C. 1994. A scanning electron-microscopic study of in vitro abrasion of mammalian tooth enamel under compressive loads. Archives of Oral Biology 39:111.CrossRefGoogle ScholarPubMed
MacFadden, B. J., Solounias, N., and Cerling, T. E.. 1999. Ancient diets, ecology, and extinction of 5-million-year-old horses from Florida. Science 283:824827.CrossRefGoogle ScholarPubMed
Madden, R. H. 2015. Hypsodonty in Mammals: Evolution, Geomorphology, and the Role of Earth Surface Processes. Cambridge University Press, Cambridge.Google Scholar
Merceron, G., Blondel, C., Brunet, M., Sen, S., Solounias, N., Viriot, L., and Heintz, E.. 2004. The Late Miocene paleoenvironment of Afghanistan as inferred from dental microwear in artiodactyls. Palaeogeography, Palaeoclimatology, Palaeoecology 207:143163.CrossRefGoogle Scholar
Merceron, G., Bonis, L. d., Viriot, L., and Blondel, C.. 2005a. Dental microwear of fossil bovids from northern Greece: paleoenvironmental conditions in the eastern Mediterranean during the Messinian. Palaeogeography, Palaeoclimatology, Palaeoecology 217:173185.CrossRefGoogle Scholar
Merceron, G., Blondel, C., De Bonis, L., Koufos, G. D., and Viriot, L.. 2005b. A new method of dental microwear analysis: Application to extant primates and Ouranopithecus macedoniensis (Late Miocene of Greece). Palaios 20:551561.CrossRefGoogle Scholar
Merceron, G., Kaiser, T., Kostopoulos, D. S., and Schultz, E.. 2010. Ruminant diets and the Miocene extinction of European great apes. Proceedings of the Royal Society B 277:31053112.CrossRefGoogle ScholarPubMed
Merceron, G., and Ungar, P. S.. 2005. Dental microwear and palaeoecology of bovids from the Early Pliocene of Langebaanweg, Western Cape Province, South Africa. South African Journal of Science 101:365370.Google Scholar
Mihlbachler, M. C., and Beatty, B. L.. 2012. Magnification and resolution in dental microwear analysis using light microscopy. Palaeontologia Electronica 15(25A): 14 pp.Google Scholar
Mihlbachler, M. C., Beatty, B. L., Caldera-Siu, A., Chan, D., and Lee, R.. 2012. Error rates in dental microwear analysis using light microscopy. Palaeontologia Electronica 12(12A): 22 pp.Google Scholar
Munzell, S. C., Rivals, F., Pacher, M., Doppes, D., Rabeder, G., Conard, N. J., and Bocherens, H.. 2013. Behavioural ecology of Late Pleistocene bears (Ursus spalaeus, Ursus ingressus): insight from stable isotopes (C, N, O) and tooth microwear. Quaternary International 339–340:148163.Google Scholar
Novello, A., Blondel, C., and Brunet, M.. 2010. Feeding behavior and ecology of the Late Oligocene Moschidae (Mammalia, Ruminantia) from la Milloque (France): Evidence from dental microwear analysis. Comptes Rendus Palevol 9:470478.CrossRefGoogle Scholar
Owen-Smith, R. N. 1988. Megaherbivores: The influence of very large body size on ecology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Palombo, M. R., Filippi, M. L., Iacumin, P., Longinelli, A., Barbieri, M., and Maras, A.. 2005. Coupling tooth microwear and stable isotope analysis for palaeodiet reconstruction: the case study of Late Middle Pleistocene Elephas (Palaeoloxodon) antiquus teeth from Central Italy (Rome area). Quaternary International 126–128:153170.CrossRefGoogle Scholar
Perneger, T. 1998. Whats wrong with Bonferroni adjustments? British Medical Journal 316:12361238.CrossRefGoogle ScholarPubMed
Pickles, M. J. 2006. Tooth wear. Pp. 86104in R. M. Duckworth, ed. The Teeth and Their Environment. Karger, Basel.Google Scholar
Popowics, T. E., and Fortelius, M.. 1997. On the cutting edge: Tooth blade sharpness in herbivorous and faunivorous mammals. Annales Zoologici Fennici 34:7388.Google Scholar
Prothero, D. R., and Schooch, R. M.. 2002. Horns, Tusks, and Flippers: The Evolution of Hoofed Mammals. Johns Hopkins, Baltimore.Google Scholar
Rabenold, D., and Pearson, A.. 2014. Scratching the surface: A critique of Lucas et al. (2013)’s conclusion that phytoliths do not abrade ename. Journal of Human Evolution 74:130133.CrossRefGoogle Scholar
Rensberger, J. M., Forsten, A., and Fortelius, M.. 1984. Functional evolution of the cheek tooth pattern and chewing direction in Tertiary Horses. Paleobiology 10:439452.CrossRefGoogle Scholar
Rensberger, J. M., and Koenigswald, W. v.. 1980. Functional and phylogenetic interpretation of enamel microstructure in rhinoceroses. Paleobiology 6:477495.CrossRefGoogle Scholar
Rivals, F., and Deniaux, B.. 2003. Dental microwear analysis for investigating the diet of an argali populations (Ovis ammon antiqua) of mid-Pleistocene age, Caune de l’Argo cave, eastern Pyrenees, France. Palaeogeography, Palaeoclimatology, Palaeoecology 193:443455.CrossRefGoogle Scholar
Rivals, F., Julien, M.-A., Kuitems, M., Kolfschoten, T. v., Serangeli, J., Drucker, D. G., Bocherens, H., and Conard, N. J.. (In press) Investigatoin of equid paleodiet from Schöningen 13 II-4 through dental wear and isotopic analysis: Archaelogical implications. Journal of Human Evolution.Google Scholar
Rivals, F., Mihlbachler, M. C., Solounias, N., Mol, D., Semprebon, G. M., and de Vos, J.. 2010. Palaeoecology of the mammoth steppe fauna from the late Pleistocene of the North Sea and Alaska: separative species preference from geographic influence in paleoecological dental wear analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 286:4254.CrossRefGoogle Scholar
Rivals, F., Rindel, D., and Belardi, J. B.. 2013. Dietary ecology of extant guanaco (Lama guanicoe) from Southern Patagonia: seasonal leaf browsing and its archaeological implications. Journal of Archaeological Science 40:29712980.CrossRefGoogle Scholar
Rivals, F., Schulz, E., and Kaiser, T.. 2008. Climate-related dietary diversity of the ungulate faunas from the middle Pleistocene succession (OIS 14-12) at the Caune de l’Argo (France). Paleobiology 34:117127.CrossRefGoogle Scholar
Rivals, F., and Semprebon, G. M.. 2012. Paleoindian subsistence strategies and late Pleistocene paleoenvironments in the northeastern and southwestern United States: a tooth wear analysis. Journal of Archaeological Science 39:16081617.CrossRefGoogle Scholar
Rivals, F., and Solounias, N.. 2007. Differences in tooth microwear of populations of caribou (Rangifer tarandus, Ruminantia, Mammalia) and implications to ecology, migration, glaciations and dental evolution. Journal of Mammalian Evolution 14:182192.CrossRefGoogle Scholar
Rivals, F., Solounias, N., and Mihlbachler, M. C.. 2007. Evidence for geographic variation in the diets of late Pleistocene and early Holocene Bison in North America, and differences from the diets of recent Bison. Quaternary Research 68:338346.CrossRefGoogle Scholar
Rivals, F., Solounias, N., and Schaller, G. B.. 2011. Diet of Mongolian Gazelles and Tibetan antelopes from steppe habitats using premaxillary shape, tooth mesowear and microwear analysis. Mammalian Biology 76:358364.CrossRefGoogle Scholar
Rivals, F., Takatsuki, S., Albert, R. M., and Maciá, L.. 2014. Bamboo feeding and tooth wear of three sika deer (Cervus nippon) populations from northern Japan. Journal of Mammalogy 95:10431053.CrossRefGoogle Scholar
Schmidt, C. W. 2008. Dental microwear analysis of extinct flat-headed peccary (Platygonus compressus) from southern Indiana. Proceedings of the Indiana Academy of Science 117:95106.Google Scholar
Schultz, E., and Fahlke, J. M.. 2009. The diet of Metaschiizotherium bavaricum (Chalicotheriidae, Mammalia) from the MN 5 of Sandelzhausen (Germany) implied by the mesowear method. Palaeontologische Zeitschrift 83:175181.CrossRefGoogle Scholar
Schultz, E., Fahlke, J. M., Merceron, G., and Kaiser, T.. 2007. Feeding ecology of the Chalicotheriidae (Mammalia, Perissodactyla, Ancylopoda). Results from dental micro- and mesowear analyses. Verhandlungen des Naturwissenschaftlichen Vereins zu Hamburg 43:531.Google Scholar
Scott, J. R. 2012. Dental microwear texture analysis of extant African Bovidae. Mammalia 76:157174.CrossRefGoogle Scholar
Searle, K. R., and Shipley, L. A.. 2008. The comparative feeding behaviour of large browsing and grazing herbivores. Pp. 117148in I. J. Gordon, and H. H. T. Prins, eds. The Ecology of Browsing and Grazing. Springer, Berlin.CrossRefGoogle Scholar
Semprebon, G., Godfrey, L., Solounias, N., Sutherland, M. R., and Jungers, W. L.. 2004a. Can low-magnification stereomicroscopy reveal diet? Journal of Human Evolution 47:115144.CrossRefGoogle ScholarPubMed
Semprebon, G., Janis, C. M., and Solounias, N.. 2004b. The diets of Dromomerycidae (Mammalia: Artiodactyla) and their response to Miocene vegetational change. Journal of Vertebrate Paleontology 24:427444.CrossRefGoogle Scholar
Semprebon, G. M., and Rivals, F.. 2007. Was grass more prevalent in the pronghorn past? An assessment of the diatary adaptations of Miocene to recent Antilocapridae (Mammalia: Artiodactyla). Palaeogeography, Palaeoclimatology, Palaeoecology 253:3323347.CrossRefGoogle Scholar
Semprebon, G. M., and Rivals, F.. 2010. Trends in the paleodietary habits of fossil camels from the Tertiary and Quaternary of North America. Palaeogeography, Palaeoclimatology, Palaeoecology 295:131145.CrossRefGoogle Scholar
Semprebon, G. M., Sise, P. J., and Coombs, M. C.. 2011. Potential bark and fruit browsing as revealed by stereomicrowear analysis of the peculiar clawed herbivores known as chalicotheres (Perissodactyla, Chalicotherioidea). Journal of Mammalian Evolution 18:3355.CrossRefGoogle Scholar
Solounias, N., Rivals, F., and Semprebon, G. M.. 2010. Dietary interpretation and paleoecology of herbivores from Pikermi and Samos (late Miocene of Greece). Paleobiology 36:113136.CrossRefGoogle Scholar
Solounias, N., and Semprebon, G.. 2002. Advances in reconstruction of ungulate ecomorphology with applications to early fossil equids. American Museum Novitates 3366:149.2.0.CO;2>CrossRefGoogle Scholar
Strait, S. G. 2014. Myrmecopaheous microwear: Implications for diet in the hominin fossil record. Journal of Human Evolution 71:8793.CrossRefGoogle ScholarPubMed
Todd, N. E., Falco, N., Silva, N., and Sanchez, C.. 2007. Dental microwea variation on complete molars of Loxodonta africana and Elephas maximus. Quaternary International 169–170:192202.CrossRefGoogle Scholar
Townsend, K. E., and Croft, D. A.. 2008. Diets of notoungulates from the Santa Cruz Formation, Argentina: New evidence from enamel microwear. Journal of Vertebrate Paleontology 28:217230.CrossRefGoogle Scholar
Tütken, T., Kaiser, T., Vennemann, T., and Merceron, G.. 2013. Opportunistic feeding strategy for the earliest old word hypsodont equids: Evidence from stable isotope and dental wear proxies. PLoS ONE 8:e74463. doi: 10.1371/journal.pone.0074463.CrossRefGoogle Scholar
Ungar, P. S., Merceron, G., and Scott, R. S.. 2007. Dental microwear texture analysis of Varswater bovids and early Pliocene palaeoenvironments of Langbaanweg, Western Cape Province, South Africa. Journal of Mammalian Evolution 14:163181.CrossRefGoogle Scholar
Ungar, P. S., Scott, J. R., Curran, S. C., Dunsworth, H. M., Harcourt-Smith, W. E. H., Lehmann, T., Manthi, F. K., and McNulty, K. P.. 2012. Early Neogene environments in East Africa: Evidence from dental microwear of tragulids. Palaeogeography, Palaeoclimatology, Palaeoecology 342–343:8496.CrossRefGoogle Scholar
Ungar, P. S., Scott, R. S., Grine, F. E., and Teaford, M. F.. 2010. Molar microwear textures and the diets of Australopithecus anamensis and Australopithecus afarensis. Philosophical Transactions of the Royal Society of London B 365:33453354.CrossRefGoogle ScholarPubMed
Ungar, P. S., and Sponheimer, M.. 2011. The diets of early hominins. Science 334:190193.CrossRefGoogle ScholarPubMed
Van Soest, P. J. 1996. Allometry and ecology of feeding behavior and digestive capacity in herbivores: a review. Zoo Biology 15:455479.3.0.CO;2-A>CrossRefGoogle Scholar
Wolf, D., Nelson, S. V., Schwartz, H. L., Semprebon, G. M., Kaiser, T., and Bernor, R. L.. 2010. Taxonomy and paleoecology of the Pleistocene Equidae from Makuyuni, Northern Tanzania. Palaeodiversity 3:249269.Google Scholar