Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-18T19:25:15.318Z Has data issue: false hasContentIssue false

Chromosomal Mechanisms in the Evolution of Artiodactyls

Published online by Cambridge University Press:  25 May 2016

Neil B. Todd*
Affiliation:
Department of Biology, Boston University, Boston 02215.
*
Correspondence to: P.O. Box 5, Newtonville, Massachusetts 02160.

Abstract

Evidence is presented that primitive artiodactyls had a diploid number of 14. The higher diploid numbers of most living artiodactyls are interpreted as resulting from karyotypic fissioning at the times of past adaptive radiations. The fossil record appears to support this contention.

An evolutionary sequence of unusual X chromosome transformations has been deduced from the differences that exist among extant species. From these, and from interrelationships of karyotypes, certain phylogenetic revisions are suggested.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Amrud, J., and Nes, N. 1966. The chromosomes of the roe (Capreolus capreolus). Hereditas. 56:217220.Google Scholar
Brenner, S. 1946. The chromosome complement of Elephantulus. S. Afr. J. Med. Sci. 11(Biol. Suppl.):7178.Google Scholar
Chandra, H. S., Hungerford, D. A., Wagner, J., and Snyder, R. L. 1967. Chromosomes of five artiodactyl mammals. Chromosoma (Berl.) 21:211220.Google Scholar
Churcher, C. S. 1970. Two new Upper Miocene giraffids from Fort Ternan, Kenya, East Africa Palaeotragus primaevus n. sp. Samotherium africanus n. sp. Fossil Vert. Africa. 2:1106.Google Scholar
Duwe, A. E. 1969. The relationship of the chevrotain, Tragulus javanicus, to other Artiodactyla based on skeletal muscle antigens. J. Mammal. 50:137140.CrossRefGoogle Scholar
Ford, C. E., and Hamerton, J. L. 1970. Chromosome polymorphism in the common shrew, Sorex araneus. Symp. Zool. Soc. Lond. No. 26:223236.Google Scholar
Fredga, K. 1970. Unusual sex-chromosome inheritance in mammals. Philos. Trans. Roy. Soc. B 259:1536.Google Scholar
Fredga, K. 1971. Idiogram and fluorescence pattern of the chromosomes of the Indian muntjac. Hereditas 68:332337.Google Scholar
Gropp, A., Giers, D., and Tettenborn, U. 1969. Das Chromosomenkomplement des Wildschweins (Sus scrofa). Experientia 25:778.CrossRefGoogle ScholarPubMed
Gustavsson, I., and Sundt, C. O. 1968. Karyotypes in five species of deer (Alces dices L., Capreolus capreolus L., Cervus elaphus L., Cervus nippon Temm. and Dama dama L.). Hereditas 60:233248.CrossRefGoogle Scholar
Gustavsson, I., and Sundt, C. O. 1969. Three polymorphic systems of centric fusion type in a population of Manchurian sika deer (Cervus nippon hortulorum Swinhoe). Chromosoma (Berl.) 28:245254.CrossRefGoogle Scholar
Hard, W. L. 1966. The karyotype of the peccary, Pecari tajacu angulatus. Mammal. Chrom. Newsl. No. 22:193.Google Scholar
Hard, W. L. 1969. The chromosomes of duikers. Mammal. Chrom. Newsl. 10:216217.Google Scholar
Hard, W. L. 1971. Cephalophus silvicultor (yellow backed duiker). In: An Atlas of Mammalian Chromosomes 5: Folio 242. Hsu, T. C., and Benirschke, K. (eds.). Springer-Verlag, Inc.; New York.Google Scholar
Hayman, D. L., Kirsch, J. A. W., Martin, P. G., and Waller, P. F. 1971. Chromosomal and serological studies of the Caenolestidae and their implications for marsupial evolution. Nature 231:194195.CrossRefGoogle ScholarPubMed
Hösli, P., and Lang, E. M. 1970a. A preliminary note on the chromosomes of the Giraffidae: Giraffa camelopardalis and Okapia johnstoni. Mammal. Chrom. Newsl. 11:109110.Google Scholar
Hösli, P., and Lang, E. M. 1970b. Die Chromosomen des Davidshirsches (Elaphurus davidianus). Schweizer Archiv für Tierheilkunde 112:395396.Google ScholarPubMed
Hsu, T. C., Baker, R. J., and Utakoji, T. 1968. The multiple sex chromosome system of American leaf-nosed bats (Chiroptera, Phyllostomidae). Cytogenetics 7:2738.Google Scholar
Hsu, T. C., and Benirschke, K. (eds.). 1967–1971. An Atlas of Mammalian Chromosomes. Vols. 1–6. Springer-Verlag, Inc.; New York.CrossRefGoogle Scholar
Ito, T., Soma, H., and Benirschke, K. 1972. The chromosome complement of the Japanese serow, Capricornis crispus crispus. Mammal. Chrom. Newsl. 13:12.Google Scholar
Jackson, R. C. 1973. Chromosomal evolution in Haplopappus gracilis: A centric transposition race. Evolution 27:243256.Google ScholarPubMed
Jukes, T. H., and Holmquist, R. 1972. Evolutionary clock: nonconstancy of rate in different species. Science 177:530532.Google Scholar
Martin, P. G., and Hayman, D. L. 1967. Quantitative comparisons between the karyotypes of Australian marsupials from three different superfamilies. Chromosoma (Berl.) 20:290310.CrossRefGoogle ScholarPubMed
McFee, A. F., and Banner, M. W. 1969. Inheritance of chromosome number in pigs. J. Reprod. Fert. 18:914.Google Scholar
Nadler, C. F. 1971. Chromosomes of the dall sheep, Ovis dalli dalli (Nelson). J. Mammal. 52:461463.Google Scholar
Newnham, R. E., and Davidson, W. M. 1967. The karyotype of the South Arabian oryx, Oryx leucoryx (Pallas). Mammal. Chrom. Newsl. 8:15.Google Scholar
Ohno, S. 1973. Ancient linkage groups and frozen accidents. Nature 244:259262.Google Scholar
Patterson, B. 1965. The fossil elephant shrews (family Macroscelididae). Bull. Mus. Comp. Zool. 133:297335.Google Scholar
Patterson, R. M., and Petricciani, J. C. 1973. A comparison of prophase and metaphase G-bands in the muntjak. J. Hered. 64:8082.CrossRefGoogle ScholarPubMed
Pirtle, E. C. 1967. Chromosomes of the female peccary (Tayassu tajacu). Mammal. Chrom. Newsl. 8:16.Google Scholar
Romer, A. S. 1966. Vertebrate Paleontology. Third Edition. University of Chicago Press; Chicago, Illinois.Google Scholar
Romer, A. S. 1968. Notes and Comments on Vertebrate Paleontology. University of Chicago Press; Chicago, Illinois.Google Scholar
Sharman, G. B. 1961. The mitotic chromosomes of marsupials and their bearing on taxonomy and phylogeny. Aust. J. Zool. 9:3860.CrossRefGoogle Scholar
Sharma, T. 1972. Germ-cell chromosomes and their behavior during meiosis in a male Indian muntjac, Muntiacus muntjak. Cytogenetics 11:16.Google Scholar
Simpson, G. G. 1945. The principles of classification and a classification of mammals. Bull. Amer. Mus. Nat. Hist. 85:1350.Google Scholar
Spalding, J. F., and Berry, R. O. 1956. A chromosome study of the wild pig (Pecari angulatus) and the domestic pig (Sus scrofa). Cytologia 21:8184.CrossRefGoogle Scholar
Taylor, K. M., and Hungerford, D. A. 1967. The chromosomes of four artiodactyls and one perissodactyl. Mammal. Chrom. Newsl. 8:233235.Google Scholar
Taylor, K. M., Hungerford, D. A., and Snyder, R. L. 1969. Artiodactyl mammals: their chromosome cytology in relation to patterns of evolution. In: Comparative Mammalian Cytogenetics. Benirschke, K. (ed.). Springer-Verlag, Inc.; New York.Google Scholar
Taylor, K. M., Hungerford, D. A., Synder, R. L., and Ulmer, F. A. Jr. 1968. Uniformity of karyotypes in the Camelidae. Cytogenetics 7:815.CrossRefGoogle ScholarPubMed
Taylor, K. M., and Taylor, B. K. 1971. Taurotragus oryx (Eland). In: An Atlas of Mammalian Chromosomes 6: Folio 295. Hsu, T. C. and Benirschke, K. (eds.). Springer-Verlag, Inc.; New York.Google Scholar
Todd, N. B. 1970. Karyotypic fissioning and canid phylogeny. J. Theor. Biol. 26:445480.Google Scholar
Ulbrich, F., and Schmitt, J. 1969. Die chromosomen von Okapia johnstoni (Sclater, 1901). Acta Zool. Pathol. (Antverpiensis) No. 49:123124.Google Scholar
Van Valen, L. 1971. Toward the origin of artiodactyls. Evolution 25:523529.Google Scholar
Wahrman, J., Richler, C., Goitein, R., Horowitz, A., and Mendelssohn, H. 1972. Multiple sex chromosome evolution, hybridization and differential X-chromosome inactivation in gazelles. Abstr. Jerusalem Chromosome Conference pp. 2021.Google Scholar
Wallace, C., and Fairall, N. 1965. The chromosomes of the giraffe. S. Afr. J. Med. Sci. 30:41.Google Scholar
Wallace, C., and Fairall, N. 1967. The chromosomes of the warthog. S. Afr. J. Med. Sci. 32:5154.Google Scholar
Wallace, C., and Fairall, N. 1971. Tragelaphus strepsiceros (Greater kudu). In: An Atlas of Mammalian Chromosomes 6: Folio 297. Hsu, T. C. and Benirschke, K. (eds.). Springer-Verlag, Inc.; New York.Google Scholar
Wurster, D. H. 1972. Sex-chromosome translocations and karyotypes in bovid tribes. Cytogenetics 11:197207.Google Scholar
Wurster, D. H., and Aitkin, N. B. 1972. Muntjac chromosomes: a new karyotype for Muntiacus muntjak. Experientia 28:972973.CrossRefGoogle Scholar
Wurster, D. H., and Benirschke, K. 1967. Chromosome studies in some deer, the springbok and the pronghorn, with notes on placentation in deer. Cytologia 32:273285.Google Scholar
Wurster, D. H., and Benirschke, K. 1968a. Chromosome studies in the superfamily Bovoidea. Chromosoma (Berl.) 25:152171.Google Scholar
Wurster, D. H., and Benirschke, K. 1968b. Tetracerus quadricornis (four-horned antilope). In: An Atlas of Mammalian Chromosomes 2: Folio 96. Hsu, T. C. and Benirschke, K. (eds.). Springer-Verlag, Inc.; New York.Google Scholar
Wurster, D. H., and Benirschke, K. 1970. Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number. Science 168:13641366.Google Scholar
Wurster, D. H., Benirschke, K., and Noelke, H. 1968. Unusually large sex chromosomes in the sitatunga (Tragelaphus spekei) and the blackbuck (Antilope cervicapra). Chromosoma (Berl.) 23:317323.Google Scholar
Yong, H. S. 1973. Complete Robertsonian fusion in the Malaysian lesser mouse-deer (Tragulus javanicus). Experientia 29:366367.Google Scholar