Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T12:01:07.786Z Has data issue: false hasContentIssue false

Changing Times, Changing Places: Heterochrony and Heterotopy - Beyond Heterochrony: The Evolution of Development. Edited by Miriam Zelditch. Wiley-Liss, New York. 2001. 371 pages. Cloth $99.95. - The odyssey of heterochrony is exceedingly curious (Gould 1977: p. 221).

Published online by Cambridge University Press:  08 April 2016

Kenneth J. McNamara*
Affiliation:
Department of Earth and Planetary Sciences, Western Australian Museum, Francis Street, Perth, Western Australia 6000. E-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Book Review
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. 1979. Size and shape in ontogeny and phylogeny. Paleobiology 5:296317.Google Scholar
Bookstein, F. L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge.Google Scholar
Carroll, S. B. 1995. Homeotic genes and the evolution of arthropods and chordates. Nature 376:479485.Google Scholar
de Beer, G. R. 1930. Embryology and evolution. Clarendon, Oxford.Google Scholar
Fink, W. L., and Zeldtich, M. L. 1995. Phylogenetic analysis of ontogenetic shape transformations: a reassessment of the piranha genus Pygocentrus (Teleostei). Systematic Biology 44:343360.Google Scholar
Frohlich, M. W., and Parker, D. S. 2000. The mostly male theory of flower evolutionary origins. Systematic Botany 25:155170.Google Scholar
German, R. Z., and Meyers, L. L. 1989. The role of time and size in ontogenetic allometry. II. An empirical study of human growth. Growth, Development and Aging 53:107115.Google Scholar
Gould, S. J. 1977. Ontogeny and phylogeny. The Belknap Press of Harvard University Press, Cambridge.Google Scholar
Gould, S. J. 2002. The structure of evolutionary theory. The Belknap Press of Harvard University Press, Cambridge.Google Scholar
Haeckel, E. 1905. The evolution of man, 5th ed.Watts and Co., London.Google Scholar
Hall, B. K. 1992. Evolutionary developmental biology, 1st ed. Chapman and Hall, London.Google Scholar
Hall, B. K. 1998. Evolutionary developmental biology, 2d ed. Kluwer Academic, Dordrecht, The Netherlands.Google Scholar
McKinney, M. L., ed. 1988. Heterochrony in evolution: a multidisciplinary approach. Plenum, New York.Google Scholar
McKinney, M. L. 1999. Heterochrony: beyond words. Paleobiology 25:149153.Google Scholar
McKinney, M. L., and McNamara, K. J. 1991. Heterochrony: the evolution of ontogeny. Plenum, New York.Google Scholar
McNamara, K. J. 1986. The role of heterochrony in the evolution of Cambrian trilobites. Biological Reviews 61:121156.Google Scholar
McNamara, K. J. 1987. Plate translocation in spatangoid echinoids: its morphological, functional and phylogenetic significance. Paleobiology 13:312325.Google Scholar
McNamara, K. J. 1988. Heterochrony and the evolution of echinoids. Pp. 149163in Paul, C. R. C. and Smith, A. B., eds. Echinoderm phylogeny and evolutionary biology. Clarendon, Oxford.Google Scholar
McNamara, K. J. 1994. The significance of gastropod predation to patterns of evolution and extinction in Australian Tertiary echinoids. Pp. 785793in David, B., Guille, A., Firal, J. P., and Roux, M., eds. Echinoderms through time (Echinoderms Dijon). Balkema, Rotterdam.Google Scholar
McNamara, K. J. ed. 1995. Evolutionary change and heterochrony. Wiley, Chichester, England.Google Scholar
McNamara, K. J. ed. 1997. Shapes of time: the evolution of growth and development. Johns Hopkins University Press, Baltimore.Google Scholar
McNamara, K. J. ed. 2002. Sequential hypermorphosis: the key to hominid evolution. Pp. 102121in Minugh-Purvis, and McNamara, 2002.Google Scholar
Minugh-Purvis, N., and McNamara, K. J., eds. 2002. Human evolution through developmental change. Johns Hopkins University Press, Baltimore.Google Scholar
Parker, S. T., and McKinney, M. L. 1999. Origins of intelligence: the evolution of cognitive development in monkeys, apes, and humans. Johns Hopkins University Press, Baltimore.Google Scholar
Raff, R. A. 1996. Shapes of life: genes, development, and evolution. University of Chicago Press, Chicago.Google Scholar
Richardson, M. K. 1995. Heterochrony and the phylotypic period. Developmental Biology 172:412421.Google Scholar
Russell, E. S. 1916. Form and function. John Murray, London.Google Scholar
Smith, K. K. 2001. Heterochrony revisited: the evolution of developmental sequences. Biological Journal of the Linnean Society 73:169186.Google Scholar
Smith, K. K. 2002. Sequence heterochrony and the evolution of development. Journal of Morphology 252:8297.Google Scholar
Zákány, J., Gérard, M., Favier, B., and Duboule, D. 1997. Deletion of a HoxD enhancer induces transcriptional heterochrony leading to transposition of the sacrum. EMBO Journal 16:43934402.Google Scholar
Zelditch, M. L., and Fink, W. L. 1996. Heterochrony and heterotopy: stability and innovation in the evolution of form. Paleobiology 22:241254.Google Scholar
Zelditch, M. L., Bookstein, F. L., and Lundrigan, B. L. 1992. Ontogeny of integrated skull growth in the cotton rat Sigmodon fulviventer. Evolution 46:11641180.Google Scholar