Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T22:45:02.724Z Has data issue: false hasContentIssue false

Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and late Cenozoic

Published online by Cambridge University Press:  08 April 2016

Andrew M. Bush
Affiliation:
Department of Ecology and Evolutionary Biology and Center for Integrative Geosciences, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, Connecticut 06269. E-mail: [email protected]
Richard K. Bambach
Affiliation:
Botanical Museum, Harvard University, Cambridge, Massachusetts, and Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. E-mail: [email protected]
Gwen M. Daley
Affiliation:
Department of Chemistry, Physics, and Geology, Winthrop University, Rock Hill, South Carolina 29733. E-mail: [email protected]

Abstract

We present a new three-dimensional theoretical ecospace for the ecological classification of marine animals based on vertical tiering, motility level, and feeding mechanism. In this context, analyses of a database of level-bottom fossil assemblages with abundance counts demonstrate fundamental changes in marine animal ecosystems between the mid-Paleozoic (461–359 Ma) and late Cenozoic (23–0.01 Ma). The average local relative abundance of infaunal burrowers, facultatively motile animals, and predators increased, whereas surface dwellers and completely non-motile animals decreased in abundance. Considering tiering, motility, and feeding together, more modes of life had high to moderate average relative abundance in the Cenozoic than in the Paleozoic. These results are robust to the biasing effects of aragonite dissolution in Paleozoic sediments and to heterogeneities in the latitudinal and environmental distributions of collections. Theoretical ecospace provides a unified system for future analyses of the utilization of ecologic opportunities by marine metazoa.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aberhan, M. 1994. Guild-structure and evolution of Mesozoic benthic shelf communities. Palaios 9:516545.CrossRefGoogle Scholar
Aberhan, M., Kiessling, W., and Fürsich, F. T. 2006. Testing the role of biological interactions in the evolution of mid-Mesozoic marine benthic ecosystems. Paleobiology 32:259277.CrossRefGoogle Scholar
Alroy, J. 1998. Cope's rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731734.Google Scholar
Alroy, J. 2000. Understanding the dynamics of trends within evolving lineages. Paleobiology 26:319329.Google Scholar
Alroy, J. 2004. Are Sepkoski's evolutionary faunas dynamically coherent? Evolutionary Ecology Research 6:132.Google Scholar
Ausich, W. I., and Bottjer, D. J. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science 216:173174.CrossRefGoogle ScholarPubMed
Ausich, W. I., and Bottjer, D. J. 1985. Phanerozoic tiering in suspension-feeding communities on soft substrata: implications for diversity. Pp. 255274 in Valentine, J. W., ed. Phanerozoic diversity patterns. Princeton University Press, Princeton, N.J. Google Scholar
Bambach, R. K. 1971. Adaptations in Grammysia obliqua . Lethaia 4:169183.CrossRefGoogle Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.CrossRefGoogle Scholar
Bambach, R. K. 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic. Pp. 719746 in Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in recent and fossil benthic communities. Plenum, New York.CrossRefGoogle Scholar
Bambach, R. K. 1985. Classes and adaptive variety: the ecology of diversification in marine faunas through the Phanerozoic. Pp. 191253 in Valentine, J. W., ed. Phanerozoic diversity patterns. Princeton University Press, Princeton, N.J. Google Scholar
Bambach, R. K. 1999. Energetics in the global marine fauna: a connection between terrestrial diversification and change in the marine biosphere. Geobios 32:131144.Google Scholar
Bambach, R. K., and Bennington, J. B. 1996. Do communities evolve? A major question in evolutionary paleoecology. Pp. 123160 in Jablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Bambach, R. K., Knoll, A. H., and Sepkoski, J. J. Jr. 2002. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proceedings of the National Academy of Sciences USA 99:68546959.Google Scholar
Bambach, R. K., Bush, A. M., and Erwin, D. H. 2007. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50:122.CrossRefGoogle Scholar
Baumiller, T. K., and Gahn, F. J. 2004. Testing predator-driven evolution with Paleozoic crinoid arm regeneration. Science 305:14531455.CrossRefGoogle ScholarPubMed
Behrensmeyer, A. K., Fürsich, F. T., Gastaldo, R. A., Kidwell, S. M., Kosnik, M. A., Kowalewski, M., Plotnick, R. E., Rogers, R. R., and Alroy, J. 2005. Are the most durable shelly taxa also the most common in the marine fossil record? Paleobiology 31:607623.Google Scholar
Benjamini, Y., and Hochberg, Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society B 57:289300.Google Scholar
Bennington, J. B., and Rutherford, S. D. 1999. Precision and reliability in paleocommunity comparisons based on cluster-confidence intervals: how to get more statistical bang for your sampling buck. Palaios 14:506515.Google Scholar
Benton, M. J. 1993. The fossil record 2. Chapman and Hall, London.Google Scholar
Black, M. A. 2004. A note on the adaptive control of false discovery rates. Journal of the Royal Statistical Society B 66:297304.Google Scholar
Blondel, J. 2003. Guilds or functional groups: does it matter? Oikos 100:223231.Google Scholar
Bottjer, D. J., and Ausich, W. I. 1986. Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology 12:400420.Google Scholar
Breard, S. Q., Callender, A. D., Denne, R. A., and Nault, M. J. 2000. Taxonomic uniformitarianism in Gulf of Mexico Basin Cenozoic foraminiferal paleoecology: is the present always the key to the past? Gulf Coast Association of Geological Societies Transactions 50:725736.Google Scholar
Britton, J. C., and Morton, B. 1994. Marine carrion and scavengers. Oceanography and Marine Biology: An Annual Review 32:369434.Google Scholar
Bush, A. M., and Bambach, R. K. 2004a. Did alpha diversity increase through the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. Journal of Geology 112:625642.CrossRefGoogle Scholar
Bush, A. M., and Bambach, R. K. 2004b. Phanerozoic increases in alpha diversity and evenness: linked consequences of increased ecospace use. Geological Society of America Abstracts with Programs 36:457.Google Scholar
Bush, A. M., Kowalewski, M., Hoffmeister, A. P., Bambach, R. K., and Daley, G. M. 2006. Sieve mesh size biases and the ecologic composition of fossil samples. Geological Society of America Abstracts with Programs 38:441.Google Scholar
Cherns, L., and Wright, V. P. 2000. Missing molluscs as evidence of large-scale, early skeletal aragonite dissolution in a Silurian sea. Geology 28:791794.2.0.CO;2>CrossRefGoogle Scholar
Daley, G. M. 2002. Creating a paleoecological framework for evolutionary and paleoecological studies: an example from the Fort Thompson Formation (Pleistocene) of Florida. Palaios 17:419434.Google Scholar
Dodd, J. R., and Stanton, R. J. 1990. Paleoecology: concepts and applications. Wiley, New York.Google Scholar
Droser, M. L., and Bottjer, D. J. 1989. Ordovician increase in extent and depth of bioturbation: implications for understanding early Phanerozoic ecospace utilization. Geology 17:850852.Google Scholar
Fagerstrom, J. A. 1987. The evolution of reef communities. Wiley Interscience, New York.Google Scholar
Fagerstrom, J. A. 1988. A structural model for reef communities. Palaios 3:217220.Google Scholar
Fagerstrom, J. A. 1991. Reef-building guilds and a checklist for determining guild membership. Coral Reefs 10:4752.Google Scholar
Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A., Schofield, O., and Taylor, F. J. R. 2004. The evolution of modern eukaryotic phytoplankton. Science 305:354360.Google Scholar
Finnegan, S., and Droser, M. L. 2005. Relative and absolute abundance of trilobites and rhynchonelliform brachiopods across the Lower/Middle Ordovician boundary, eastern Basin and Range. Paleobiology 31:480502.CrossRefGoogle Scholar
Flessa, K. W., and Kowalewski, M. 1994. Shell survival and time-averaging in nearshore and shelf environments: estimates from the radiocarbon literature. Lethaia 27:153165.Google Scholar
Flessa, K. W., Cutler, A. H., and Meldahl, K. H. 1993. Time and taphonomy: quantitative estimates of time-averaging and stratigraphic disorder in a shallow marine habitat. Paleobiology 19:266286.CrossRefGoogle Scholar
Fortey, R. A., and Owens, R. M. 1999. Feeding habits in trilobites. Palaeontology 42:429465.Google Scholar
García, L. V. 2003. Controlling the false discovery rate in ecological research. Trends in Ecology and Evolution 18:553554.CrossRefGoogle Scholar
Genovese, C., and Wasserman, L. 2002. Operating characteristics and extensions of the false discovery rate procedure. Journal of the Royal Statistical Society B 64:499517.CrossRefGoogle Scholar
Holterhoff, P. F. 1997. Filtration models, guilds, and biofacies: crinoid paleoecology of the Stanton Formation (Upper Pennsylvanian), midcontinent, North America. Palaeogeography, Palaeoclimatology, Palaeoecology 130:177208.Google Scholar
Hutchinson, G. E. 1958. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22:415427.CrossRefGoogle Scholar
Hutchinson, G. E. 1965. The ecological theater and the evolutionary play. Yale University Press, New Haven, Conn. Google Scholar
Jackson, J. B. C., Todd, J. A., Fortunato, H., and Jung, P. 1999. Diversity and assemblages of Neogene Caribbean Mollusca of lower Central America. In Collins, L. and Coates, A. G., eds. A paleobiotic survey of Caribbean faunas from the Neogene of the Isthmus of Panama. Bulletins of American Paleontology 357:193230.Google Scholar
Kamermans, P. 1994. Similarity in food source and timing of feeding in deposit- and suspension-feeding bivalves. Marine Ecology Progress Series 104:6375.Google Scholar
Kelley, P. H., Kowalewski, M., and Hansen, T. A., eds. 2003. Predator-prey interactions in the fossil record. Topics in Geobiology 20. Plenum/Kluwer Academic, New York.Google Scholar
Kidwell, S. M. 2001. Preservation of species abundance in marine death assemblages. Science 294:10911094.Google Scholar
Kidwell, S. M. 2002. Time-averaged molluscan death assemblages: palimpsests of richness, snapshots of abundance. Geology 30:803806.Google Scholar
Kidwell, S. M. 2005. Shell composition has no net impact on large-scale evolutionary patterns in mollusks. Science 307:914917.Google Scholar
Kidwell, S. M., and Bosence, D. W. J. 1991. Taphonomy and time-averaging of marine shelly faunas. Pp. 115209 in Allison, P. A. and Briggs, D. E. G., eds. Taphonomy: releasing the data locked in the fossil record. Plenum, New York.Google Scholar
Kohn, A. J. 1959. The ecology of Conus in Hawaii. Ecological Monographs 29:4790.Google Scholar
Kosnik, M. A. 2005. Changes in Late Cretaceous-early Tertiary benthic marine assemblages: analyses from the North American coastal plain shallow shelf. Paleobiology 31:459479.Google Scholar
Kowalewski, M., and Bambach, R. K. 2003. The limits of paleontological resolution. Pp. 148 in Harries, P. J., ed. Approaches in high-resolution stratigraphic paleontology. Kluwer Academic, New York.Google Scholar
Kowalewski, M., and Kelley, P. H., eds. 2002. The fossil record of predation. Paleontological Society Special Papers 8. Yale University Reprographics and Imaging Services, New Haven, Conn. Google Scholar
Kowalewski, M., Dulai, A., and Fürsich, F. T. 1998. A fossil record full of holes: the Phanerozoic history of drilling predation. Geology 26:10911094.Google Scholar
LaBarbera, M. 1981. The ecology of Mesozoic Gryphaea, Exogyra, and Ilymatogyra (Bivalvia: Mollusca) in a modern ocean. Paleobiology 7:510526.Google Scholar
Lockwood, R. 2004. The K/T event and infaunality: morphological and ecological patterns of extinction and recovery in veneroid bivalves. Paleobiology 30:507521.2.0.CO;2>CrossRefGoogle Scholar
Lupia, R., Lidgard, S., and Crane, P. R. 1999. Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology 25:305340.CrossRefGoogle Scholar
Madin, J. S., Alroy, J., Aberhan, M., Fürsich, F. T., Kiessling, W., Kosnik, M. A., and Wagner, P. J. 2006. Statistical independence of escalatory ecological trends in Phanerozoic marine invertebrates. Science 312:897900.Google Scholar
McGhee, G. R. Jr. 1998. Theoretical morphology. Columbia University Press, New York.Google Scholar
McKinney, F. L., Lidgard, S., Sepkoski, J. J. Jr., and Taylor, P. D. 1998. Decoupled temporal patterns of evolution and ecology in two post-Paleozoic clades. Science 281:807809.Google Scholar
McShea, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48:17471763.Google Scholar
Patzkowsky, M. E., and Holland, S. M. 1999. Biofacies replacement in a sequence stratigraphic framework: Middle and Upper Ordovician of the Nashville Dome, Tennessee, USA. Palaios 14:301317.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Roopnarine, P. D. 2006. Extinction cascades and catastrophe in ancient food webs. Paleobiology 32:119.CrossRefGoogle Scholar
Root, R. B. 1967. The niche exploitation pattern of the blue-gray gnatcatcher. Ecological Monographs 37:317350.Google Scholar
Sanders, D. 2003. Syndepositional dissolution of calcium carbonate in neritic carbonate environments: geologic recognition, processes, potential significance. Journal of African Earth Sciences 36:99134.Google Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.Google Scholar
Sepkoski, J. J. Jr 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363:1560.Google Scholar
Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity: a strong signal from the fossil record. Nature 293:435437.Google Scholar
Sepkoski, J. J. Jr., Bambach, R. K., and Droser, M. L. 1991. Secular changes in Phanerozoic event bedding and the biological overprint. Pp. 298312 in Einsele, G., Ricken, W., and Seilacher, A., eds. Cycles and events in stratigraphy. Springer, Berlin.Google Scholar
Signor, P. W. III, and Brett, C. E. 1984. The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology 10:229245.Google Scholar
Skilleter, G. A., and Peterson, C. H. 1994. Control of foraging behavior of individuals within an ecosystem context: the clam Macoma balthica and interactions between competition and siphon cropping. Oecologia 100:268278.Google Scholar
Staff, G. M., and Powell, E. N. 1999. Onshore-offshore trends in community structural attributes: death assemblages from the shallow continental shelf of Texas. Continental Shelf Research 19:717756.Google Scholar
Stanley, S. M. 1970. Relation of shell form to life habits of the Bivalvia (Mollusca). Geological Society of America Memoir 125. Geological Society of America, Boulder, Colo. Google Scholar
Stanley, S. M., and Hardie, L. A. 1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology 144:319.CrossRefGoogle Scholar
Thayer, C. W. 1979. Biological bulldozers and the evolution of marine benthic communities. Science 203:458461.Google Scholar
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of the marine benthos. Pp. 479625 in Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in recent and fossil benthic communities. Plenum, New York.Google Scholar
Tomašových, A. 2006. Linking taphonomy to community-level abundance: insights into compositional fidelity of the Upper Triassic shell concentrations (eastern Alps). Palaeogeography, Palaeoclimatology, Palaeoecology 235:355381.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators, and grazers. Paleobiology 3:245258.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation: an ecological history of life. Princeton University Press, Princeton, N.J. CrossRefGoogle Scholar
Wang, S. C. 2001. Quantifying passive and driven large-scale evolutionary trends. Evolution 55:849858.Google Scholar
Watkins, R. 1991. Guild structure and tiering in a high-density Silurian community, Milwaukee County, Wisconsin. Palaios 6:465478.Google Scholar
Westrop, S. R., and Adrain, J. M. 1998. Trilobite alpha diversity and the reorganization of Ordovician benthic marine communities. Paleobiology 24:116.Google Scholar
Wright, P., Cherns, L., and Hodges, P. 2003. Missing molluscs: field testing taphonomic loss in the Mesozoic through early large-scale aragonite dissolution. Geology 31:211214.Google Scholar
Supplementary material: PDF

Bush et al. supplementary material

Appendix

Download Bush et al. supplementary material(PDF)
PDF 94.3 KB