Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T21:18:54.310Z Has data issue: false hasContentIssue false

Changes in Eocene plant diversity and composition of vegetation: the lacustrine archive of Messel (Germany)

Published online by Cambridge University Press:  15 August 2018

Olaf K. Lenz
Affiliation:
Senckenberg Gesellschaft für Naturforschung, General Directorate, Senckenberganlage 25, 60325 Frankfurt am Main, Germany, and Technische Universität Darmstadt, Institute of Applied Geosciences, Applied Sedimentology, Schnittspahnstrasse 9, 64287 Darmstadt, Germany. E-mail: [email protected]
Volker Wilde
Affiliation:
Senckenberg Forschungsinstitut und Naturmuseum, Palaeontology and Historical Geology, Section of Palaeobotany, Senckenberganlage 25, 60325 Frankfurt am Main, Germany. E-mail: [email protected]

Abstract

Based on high-resolution palynological analysis of 680 samples from a core, short-term changes in plant diversity and floristic composition within the Paleogene greenhouse were detected in the lacustrine succession of a lower to middle Eocene maar lake at Messel (Federal State of Hesse, Germany). The microfloristic data show that taxonomic diversity increased rapidly within some decades during recolonization of a volcanically devastated area around the lake. With the establishment of a climax vegetation at the end of recolonization, the maximum in palynological diversity was reached within the crater area. During the following 640 Kyr the composition of the palynospectrum changed only gradually. However, different richness and evenness estimations show that alpha and gamma diversity decreased up to 35%, which can be related to the establishment of an equilibrium stage within the climax vegetation that led to the dominance of an assemblage of self-replacing species. Nevertheless, time-series analysis of alpha-diversity changes within the climax vegetation reveals that orbitally controlled climate change of Milankovitch and sub-Milankovitch order influenced the diversity of the vegetation, resulting in a rise of beta diversity. Based on the composition of the vegetation and comparison to modern analogues, our analysis proves that Eocene paratropical plant diversity increased during periods of slightly higher temperature and precipitation. Therefore, both composition and diversity of the vegetation was highly susceptible to minor-scale, short-term changes in climate, even during equable greenhouse conditions.

Type
Articles
Copyright
© 2018 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bains, S., Norris, R. D., Corfield, R. M., and Faul, K. L. 2000. Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature 407:171174.Google Scholar
Beck, J., Holloway, J. D., and Schwanghart, W. 2013. Undersampling and the measurement of beta diversity. Methods in Ecology and Evolution 4:370382.Google Scholar
Bennett, K. D. 2005. Documentation for psimpoll 4.25 and pscomb 1.03. C programs for plotting pollen diagrams and analyzing pollen data. Uppsala University, Uppsala.Google Scholar
Birks, H. J. B., Felde, V. A., Bjune, A. E., Grytnes, J. A., Seppä, H., and Giesecke, T. 2016. Does pollen-assemblage richness reflect floristic richness? A review of recent developments and future challenges. Review of Palaeobotany and Palynology 228:125.Google Scholar
Bohaty, S. M., Zachos, J. C., Florindo, F., and Delaney, M. L. 2009. Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanography 24:PA2207. doi: 10.1029/2008PA001676.Google Scholar
Bray, J. R., and Curtis, J. T. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27:326349.Google Scholar
Broothaerts, N., Verstraeten, G., Kasse, C., Bohncke, S., Notebaert, B., and Vandenberghe, J. 2014. Reconstruction and semi-quantification of human impact in the Dijle catchment, central Belgium: a palynological and statistical approach. Quaternary Science Reviews 102:96110.Google Scholar
Bruckman, W., and Ramos, E. 2009. Evidence for climate variations induced by the 11-year solar and cosmic rays cycles. Proceedings of the International Astronomical Union 5:446448.Google Scholar
Clyde, W. C., Sheldon, N. D., Koch, P. L., Gunnell, G. F., and Bartels, W. S. 2001. Linking the Wasatchian/Bridgerian boundary to the Cenozoic Global Climate Optimum: new magnetostratigraphic and isotopic results from South Pass, Wyoming. Palaeogeography, Palaeoclimatology, Palaeoecology 167:175199.Google Scholar
Collinson, M. E., Steart, D. C., Harrington, G. J., Hooker, J. J., Scott, A. C., Allen, L. O., Glasspool, I. J., and Gibbons, S. J. 2009. Palynological evidence of vegetation dynamics in response to palaeoenvironmental change across the onset of the Paleocene–Eocene Thermal Maximum at Cobham, Southern England. Grana 48:3866.Google Scholar
Collinson, M. E., Manchester, S. R., and Wilde, V. 2012. Fossil fruits and seeds of the Middle Eocene Messel biota, Germany. Abhandlungen der Senckenberg Gesellschaft für Naturforschung 570:1251.Google Scholar
Colwell, R. K. 2013. EstimatesS: Statistical estimation of species richness and shared species from samples, Version 9. http://viceroy.eeb.uconn.edu/estimates, accessed 10 July 2018.Google Scholar
Colwell, R. K., Chao, A., Gotelli, N. J., Lin, S. Y., Mao, C. X., Chazdon, R. L., and Longino, J. T. 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation, and comparison of assemblages. Journal of Plant Ecology 5:321.Google Scholar
Condamine, F. L., Sperling, F. A. H., Wahlberg, N., Rasplus, J. Y., and Kergoat, G. J. 2012. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecology Letters 15:267277.Google Scholar
Connell, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science 199:13021310.Google Scholar
Derer, C. E., Schumacher, M. E., and Schäfer, A. 2005. The northern Upper Rhine Graben: basin geometry and early syn-rift tectono-sedimentary evolution. International Journal of Earth Sciences 94:40656.Google Scholar
Eggeling, W. J. 1947. Observations on the ecology of the Budongo rain forest, Uganda. Journal of Ecology 34:2087.Google Scholar
El Bay, R., Jacoby, W., and Wallner, H. 2001. Milankovitch signals in Messel “Oilshales.”. Kaupia 11:6972.Google Scholar
Ellison, A. M. 2010. Partitioning diversity. Ecology 91:19621963.Google Scholar
Engel, V. L., and Parrotta, J. A. 2001. An evaluation of direct seeding for reforestation of degraded lands in central São Paulo state, Brazil. Forest Ecology and Management 152:169181.Google Scholar
Felder, M., and Harms, F. J. 2004. Lithologie und genetische Interpretation der vulkano-sedimentären Ablagerungen aus der Grube Messel anhand der Forschungsbohrung Messel 2001 und weiterer Bohrungen (Eozän, Messel-Formation, Sprendlinger Horst, Südhessen). Courier Forschungsinstitut Senckenberg 252:151203.Google Scholar
Felder, M., Harms, F. J., and Liebig, V. 2001. Lithologische Beschreibung der Forschungsbohrungen Groß-Zimmern, Prinz von Hessen und Offenthal sowie zweier Lagerstättenbohrungen bei Eppertshausen (Sprendlinger Horst, Eozän, Messel-Formation, Süd-Hessen). Geologisches Jahrbuch Hessen 128:2982.Google Scholar
Friis-Christensen, E., and Svensmark, H. 1997. What do we really know about the sun-climate connection? Advances in Space Research 20:913921.Google Scholar
Gauch, H. G., and Scruggs, W. M. 1979. Variants of polar ordination. Vegetatio 40:147153.Google Scholar
Ghilardi, B., and O’Connell, M. 2013. Early Holocene vegetation and climate dynamics with particular reference to the 8.2 ka event: pollen and macrofossil evidence from a small lake in western Ireland. Vegetation History and Archaeobotany 22:99114.Google Scholar
Goth, K. 1990. Der Messeler Ölschiefer—ein Algenlaminit. Courier Forschungsinstitut Senckenberg 131:1143.Google Scholar
Gotelli, N. J., and Colwell, R. K. 2010. Estimating species richness. Pp. 3954 in A. E. Magurran and B. J. McGill, eds. Biological diversity. Frontiers in measurement and assessment. Oxford University Press, New York.Google Scholar
Grein, M., Utescher, T., Wilde, V., and Roth-Nebelsick, A. 2011. Reconstruction of the middle Eocene climate of Messel using palaeobotanical data. Neues Jahrbuch für Geologie und Paläontologie—Abhandlungen 260:305318.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1). https://palaeo-electronica.org/2001_1/past/issue1_01.htm.Google Scholar
Harms, F. J., Aderhold, G., Hoffmann, I., Nix, T., and Rosenberg, F. 1999. Erläuterungen zur Grube Messel bei Darmstadt, Südhessen. Schriftenreihe der Deutschen Geologischen Gesellschaft 8:181222.Google Scholar
Harms, F. J., Nix, T., and Felder, M. 2003. Neue Darstellungen zur Geologie des Ölschiefer-Vorkommens Grube Messel. Natur und Museum 133:140148.Google Scholar
Harrington, G. J. 2001. Impact of Paleocene/Eocene greenhouse warming on North American paratropical forests. Palaios 16:266278.Google Scholar
Harrington, G. J. 2003. Geographic patterns in the floral response to Paleocene–Eocene warming. Pp. 381393 in S. L. Wing, P. D. Gingerich, B. Schmitz, and E. Thomas, eds. Causes and consequences of globally warm climates in the early Paleogene. Geological Society of America Special Paper 369.Google Scholar
Harrington, G. J., and Jaramillo, C. J. 2007. Paratropical floral extinction in the Late Palaeocene–Early Eocene. Journal of the Geological Society, London 164:323332.Google Scholar
Harrington, G. J., Eberle, J., Le-Page, B. A., Dawson, M., and Hutchison, J. H. 2012. Arctic plant diversity in the Early Eocene greenhouse. Proceedings of the Royal Society of London B 279:15151521.Google Scholar
Hinsken, S., Ustaszewski, K., and Wetzel, A. 2007. Graben width controlling syn-rift sedimentation: the Palaeogene southern Upper Rhine Graben as an example. International Journal of Earth Sciences 96:9791002.Google Scholar
Holmgren, K., Lee-Thorp, J. A., Cooper, G. R. J., Lundblad, K., Partridge, T. C., Scott, L., Sithaldeen, R., Siep Talma, A., and Tyson, P. D. 2003. Persistent millennial-scale climatic variability over the past 25,000 years in Southern Africa. Quaternary Science Reviews 22:23112326.Google Scholar
Horikawa, K., and Ito, M. 2004. Long-term ENSO-like events represented in the Middle Pleistocene shelf successions, Boso Peninsula, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 203:239251.Google Scholar
Hottenrott, M. 2002. Age determinations of palynological assemblages from Lower Tertiary of the Eisenberg Basin (Northern Palatinate, Germany). Acta Palaeontologica Sinica 41:565575.Google Scholar
Irion, G. 1977. Der eozäne See von Messel. Natur und Museum 107:213218.Google Scholar
Jacoby, W., Wallner, H., and Smilde, P. 2000. Tektonik und Vulkanismus entlang der Messel-Störungszone auf dem Sprendlinger Horst: Geophysikalische Ergebnisse. Zeitschrift der Deutschen Geologischen Gesellschaft 151:493510.Google Scholar
Jaramillo, C., and Dilcher, D. L. 2000. Microfloral diversity patterns of the late Paleocene–Eocene interval in Colombia, northern South America. Geology 28:815818.Google Scholar
Jaramillo, C., Ochoa, D., Contreras, L., Pagani, M., Carvajal-Ortiz, H., Pratt, L. M., Krishnan, S., Cardona, A., Romero, M., Quiroz, L., Rodriguez, G., Rueda, M. J., de la Parra, F., Morßon, S., Green, W., Bayona, G., Montes, C., Quintero, O., Ramirez, R., Mora, G., Schouten, S., Bermudez, H, Navarrete, R., Parra, F., Alvarán, M., Osomo, J., Crowley, J. L., Valencia, V., and Vervoort, J. 2010. Effects of rapid global warming at the Paleocene–Eocene Boundary on neotropical vegetation. Science 330:957961.Google Scholar
Jardine, P. E., and Harrington, G. J. 2008. The Red Hills Mine palynoflora: a diverse swamp assemblage from the Late Paleocene of Mississippi. U.S.A. Palynology 32:183204.Google Scholar
Jones, E. W. 1956. Ecological studies on the rain forest of southern Nigeria: IV (continued). The plateau forest of the Okomu Forest Reserve. Journal of Ecology 44:83117.Google Scholar
Keen, H. F., Gosling, W. D., Hanke, F., Miller, C. S., Montoya, E., Valencia, B. G., and Williams, J. J. 2014. A statistical sub-sampling tool for extracting vegetation community and diversity information from pollen assemblage data. Palaeogeography, Palaeoclimatology, Palaeoecology 408:4859.Google Scholar
Keenan, R., Lamb, D., Wolding, O., Irvine, T., and Jensen, R. 1997. Restoration of plant biodiversity beneath tropical tree plantations in Northern Australia. Forest Ecology and Management 99:117131.Google Scholar
Kennett, J. P., and Stott, L. D. 1991. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature 353:225229.Google Scholar
Kern, A. K., Harzhauser, M., Soliman, A., Piller, W. E., and Mandic, O. 2013. High-resolution analysis of upper Miocene lake deposits: evidence for the influence of Gleissberg-band solar forcing. Palaeogeography, Palaeoclimatology, Palaeoecology 370:167183.Google Scholar
Kindt, R., and Coe, R. 2005. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi.Google Scholar
Koleff, P., Gaston, K. J., and Lennon, J. J. 2003. Measuring beta diversity for presence–absence data. Journal of Animal Ecology 72:367382.Google Scholar
Krause, G. H., Winter, K., Krause, B., Jahns, P., García, M., Aranda, J., and Virgo, A. 2010. High-temperature tolerance of a tropical tree, Ficus insipida: methodological reassessment and climate change considerations. Functional Plant Biology 37:890900.Google Scholar
Kruskal, J. B. 1964. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115129.Google Scholar
Lamb, D., Erskine, P. D., and Parotta, J. A. 2005. Restoration of degraded tropical forest landscapes. Science 310:16281632.Google Scholar
Lenz, O. K., Wilde, V., and Riegel, W. 2007. Recolonization of a Middle Eocene volcanic site: quantitative palynology of the initial phase of the maar lake of Messel (Germany). Review of Palaeobotany and Palynology 145:217242.Google Scholar
Lenz, O. K., Wilde, V., Riegel, W., and Harms, F. J. 2010. A 600 k.y. record of El Niño–Southern Oscillation (ENSO): evidence for persisting teleconnections during the Middle Eocene greenhouse climate of Central Europe. Geology 38:627630.Google Scholar
Lenz, O. K., Wilde, V., and Riegel, W. 2011. Short-term fluctuations in vegetation and phytoplankton during the Middle Eocene greenhouse climate: a 640-kyr record from the Messel oil shale (Germany). International Journal of Earth Sciences 100:18511874.Google Scholar
Lenz, O. K., Wilde, V., Mertz, D. F., and Riegel, W. 2015. New palynology-based astronomical and revised 40Ar/39Ar ages for the Eocene maar lake of Messel (Germany). International Journal of Earth Sciences 104:873889.Google Scholar
Lenz, O. K., Wilde, V., and Riegel, W. 2017. ENSO- and solar-driven sub-Milankovitch cyclicity in the Palaeogene greenhouse world; high-resolution pollen records from Eocene Lake Messel, Germany. Journal of the Geological Society, London 174:110128.Google Scholar
Lloyd, J., and Farquhar, G. D. 2008. Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Transactions of the Royal Society of London B 363:18111817.Google Scholar
Lorenz, V. 2000. Formation of maar-diatreme-volcanoes. International Maar Conference. Terra Nostra 2000/6:284–291.Google Scholar
Lourens, L. J., Sluijs, A., Kroon, D., Zachos, J. C., Thomas, E., Röhl, U., Bowles, J., and Raffi, I. 2005. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 235:10831087.Google Scholar
Magurran, A.E. 1988. Ecological diversity and its measurement. Croom-Helm, London.Google Scholar
Mai, D. H. 1981. Entwicklung und klimatische Differenzierung der Laubwaldflora Mitteleuropas im Tertiär. Flora 171:525582.Google Scholar
Mai, D. H. 1995. Tertiäre Vegetationsgeschichte Europas. Methoden und Ergebnisse. Fischer, Jena.Google Scholar
Mander, L., Kürschner, W. M., and McElwain, J. C. 2010. An explanation for conflicting records of Triassic–Jurassic plant diversity. Proceedings of the National Academy of Sciences USA 107:1535115356.Google Scholar
Matthess, G. 1956. Ein Beitrag zur Geologie des Ölschiefervorkommens von Messel bei Darmstadt. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereines 38:1121.Google Scholar
Merlis, T. M., Schneider, T., Bordoni, S., and Eisenman, I. 2013. The tropical precipitation response to orbital precession. Journal of Climate 26:20102021.Google Scholar
Mertz, D. F., and Renne, P. R. 2005. A numerical age for the Messel fossil deposit (UNESCO World Heritage Site) derived from 40Ar/39Ar dating on a basaltic rock fragment. In F. J. Harms and S. Schaal, eds. Current geological and paleontological research in the Messel Formation. Courier Forschungsinstitut Senckenberg 255:6775.Google Scholar
Minchin, P. R. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69:89107.Google Scholar
Morlet, J. 1983. Sampling theory and wave propagation. In C. H. Chen, ed. Issues in acoustic signal–image processing and recognition. NATO ASI Series, F 1:233261.Google Scholar
Moy, C.M., Seltzer, G. O., Rodbell, D. T., and Anderson, D. M.. 2002. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420:162165.Google Scholar
Oksanen, J. 2007. Standardization methods for community ecology. Documentation and user guide for package Vegan, Version 1:8–6.Google Scholar
Oswald, W. W., Faison, E. K., Foster, D. R., Doughty, E. D., Hall, B. R., and Hansen, B. C. S. 2007. Post-glacial changes in spatial patterns of vegetation across southern New England. Journal of Biogeography 34:900913.Google Scholar
Parrotta, J. A. 1995. Influence of overstorey composition on understory colonization by native species in plantations on a degraded tropical site. Journal of Vegetation Science 6:627636.Google Scholar
Pirrung, M., Fischer, C., Büchel, G., Gaupp, R., Lutz, H., and Neuffer, F. O. 2003. Lithofacies succession of maar crater deposits in the Eifel area (Germany). Terra Nova 15:125132.Google Scholar
Popescu, S. M., Suc, J. P., and Loutre, M. F. 2006. Early Pliocene vegetation changes forced by eccentricity-precession. Example from Southwestern Romania. Palaeogeography, Palaeoclimatology, Palaeoecology 238:340348.Google Scholar
Prentice, I. C. 1980. Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods. Review of Palaeobotany and Palynology 31:71104.Google Scholar
Ramírez, S. R., Gravendeel, B., Singer, R. B., Marshall, C. R., and Pierce, N. E. 2007. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature 448:10421045.Google Scholar
Riegel, W., Lenz, O. K., and Wilde, V. 2015. From open estuary to meandering river in a greenhouse world: an ecological case study from the middle Eocene of Helmstedt, Northern Germany. Palaios 30:304326.Google Scholar
Röhl, U., Bralower, T. J., Norris, R. D., and Wefer, G., G. 2000. New chronology for the late Paleocene thermal maximum and its environmental implications. Geology 28:927930.Google Scholar
Rull, V. 2003. Contribution of quantitative ecological methods to the interpretation of stratigraphically homogeneous pre-Quaternary sediments: a palynological example from the Oligocene of Venezuela. Palynology 27:7598.Google Scholar
Schaarschmidt, F. 1988. Der Wald, fossile Pflanzen als Zeugen eines warmen Klimas. Pp. 2952 in S. Schaal and W. Ziegler, eds. Messel–Ein Schaufenster in die Geschichte der Erde und des Lebens. Waldemar Kramer, Frankfurt.Google Scholar
Schuettpelz, E., and Pryer, K. M. 2009. Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy. Proceedings of the National Academy of Sciences USA 106:1120011205.Google Scholar
Schulz, M., and Mudelsee, M., M. 2002. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers and Geosciences 28:421426.Google Scholar
Schulz, R., Harms, F. J., and Felder, M. 2002. Die Forschungsbohrung Messel 2001: Ein Beitrag zur Entschlüsselung der Genese einer Ölschieferlagerstätte. Zeitschrift für Angewandte Geologie 48:917.Google Scholar
Schumacher, M. E. 2002. Upper Rhine Graben: role of preexisting structures during rift evolution. Tectonics 21:1006. doi: 10.1029/2001TC900022, 200.Google Scholar
Shepard, R. N. 1962a. The analysis of proximities: multidimensional scaling with an unknown distance function. I. Psychometrika 27:125139.Google Scholar
Shepard, R. N. 1962b. The analysis of proximities: multidimensional scaling with an unknown distance function. II. Psychometrika 27:219246.Google Scholar
Smith, B., and Wilson, J. B. 1996. A consumer’s guide to evenness indices. Oikos 76:7082.Google Scholar
Sommer, J. H., Kreft, H., Kier, G., Jetz, W., Mutke, J., and Barthlott, W. 2010. Projected impacts of climate change on regional capacities for global plant species richness. Proceedings of the Royal Society of London B 277:22712280.Google Scholar
Stott, L., Poulsen, C., Lund, S., and Thunell, R. 2002. Super ENSO and global climate oscillations at millennial time scales. Science 297:222226.Google Scholar
Thiele-Pfeiffer, H. 1988. Die Mikroflora aus dem mitteleozänen Ölschiefer von Messel bei Darmstadt. Palaeontographica B 211:186.Google Scholar
Tiner, R. W. 2017. Wetland indicators: a guide to wetland identification, delineation, classification, and mapping. 2nd ed. CRC, Boca Raton.Google Scholar
Torrence, C., and Compo, G. P. 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79:6178.Google Scholar
Turney, C. S. M., Kershaw, A. P., Clemens, S. C., Branch, N., Moss, P. T., and Fifield, L. K. 2004. Millennial and orbital variations of El Niño/Southern Oscillation and high-latitude climate in the last glacial period. Nature 428:306310.Google Scholar
Van Dam, J. A., Abdul Aziz, H., Sierra, M. Á. Á., Hilgen, F. J., van den Hoek Ostende, L. W., Lourens, L. J., Mein, P., van der Meulen, A.J., A. J., and Pelaez-Campomanes, P. 2006. Long-period astronomical forcing of mammal turnover. Nature 443:687691.Google Scholar
Van Tongeren, O. F. R. 1995. Cluster analysis. Pp. 174212 in R. H. G. Jongman, C. J. F. ter Braak, and O. F. R. van Tongeren, eds. Data analysis in community and landscape ecology. Cambridge University Press, Cambridge.Google Scholar
Van Vugt, N., Langereis, C. G., and Hilgen, F. J. 2001. Orbital forcing in Pliocene–Pleistocene Mediterranean lacustrine deposits: dominant expression of eccentricity versus precession. Palaeogeography, Palaeoclimatology, Palaeoecology 172:193205.Google Scholar
Vellend, M., Baeten, L., Becker-Scarpitta, A., Boucher-Lalonde, V., McCune, J. L., Messier, J., Myers-Smith, I. H., and Sax, D. F. 2017. Plant biodiversity change across scales during the Anthropocene. Annual Review of Plant Biology 68:3.13.24.Google Scholar
Weng, C., Hooghiemstra, H., and Duivenvoorden, J. F. 2006. Challenges in estimating past plant diversity from fossil pollen data: statistical assessment, problems, and possible solutions. Diversity and Distributions 12:310318.Google Scholar
Whittaker, R.H. 1960. Vegetation of the Siskiyou mountains, Oregon and California. Ecological Monographs 30:279338.Google Scholar
Whittaker, R.H. 1972. Evolution and measurement of species diversity. Taxon 21:213251.Google Scholar
Wilde, V. 1989. Untersuchungen zur Systematik der Blattreste aus dem Mitteleozän der Grube Messel bei Darmstadt (Hessen, Deutschland). Courier Forschungsinstitut Senckenberg 115:1123.Google Scholar
Wilf, P., Johnson, K. R., Cúneo, N. R., Smith, M. E., Singer, B. S., and Gandolfo, M. A. 2005. Eocene plant diversity at Laguna del Hinco and Río Pichileufú, Patagonia, Argentina. American Naturalist 165:634650.Google Scholar
Wilson, M. V., and Shmida, A. 1984. Measuring beta diversity with presence–absence data. Journal of Ecology 72:10551064.Google Scholar
Xapsos, M. A., and Burke, E. A. 2009. Evidence of 6000-year periodicity in reconstructed sunspot numbers. Solar Physics 257:363369.Google Scholar
Yousef, S. M. 2006. 80–120 yr long-term solar induced effects in the earth, past and predictions. Physics and Chemistry of the Earth 31:113122.Google Scholar
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686693.Google Scholar
Zachos, J. C., Dickens, G. R., and Zeebe, R. E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279283.Google Scholar
Zachos, J. C., Mc Carren, H., Murphy, B., Röhl, U., and Westerhold, T. 2010. Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: implications for the origin of hyperthermals. Earth and Planetary Science Letters 299:242249.Google Scholar