Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T13:29:58.413Z Has data issue: false hasContentIssue false

Calibrating the paleothermometer: climate, communities, and the evolution of size

Published online by Cambridge University Press:  08 February 2016

Tamar Dayan
Affiliation:
Department of Biological Science, Florida State University, Tallahassee, Florida 32306
Daniel Simberloff
Affiliation:
Department of Biological Science, Florida State University, Tallahassee, Florida 32306
Eitan Tchernov
Affiliation:
Department of Zoology, Hebrew University, Jerusalem, Israel 91904
Yoram Yom-Tov
Affiliation:
Department of Zoology, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel 69978

Abstract

Studies in the past 20 years have often interpreted size fluctuations in fossil mammal remains as a response to climatic change, in accord with Bergmann's rule. However, such paleoecological inference requires careful consideration of changes in community composition that could cause ecological character displacement or release. Recent size gradients of mammals should be screened for the possibility of character displacement if fossil size gradients are to be used as a “paleothermometer” for past climate. The use of teeth in paleontological studies as a measure of body size presents a further complication; for several carnivore guilds, it appears that competitive pressures act most strongly on tooth size. Teeth may therefore inaccurately estimate body size, even if body size accurately indicates climatic conditions. In the fossil record different species exhibit different size patterns under the same conditions of climatic change, and the same species may show diametrically opposite size fluctuations under similar conditions of climatic change, in different regions.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adamson, D. A., Gasse, F., Street, F. A., and Williams, M.A.J. 1980. Late Quaternary history of the Nile. Nature 287:5055.CrossRefGoogle Scholar
Avery, D. M. 1982. Micromammals as palaeoenvironmental indicators and an interpretation of the late Quaternary in the southern Cape Province, South Africa. Annals of the South African Museum 85:183374.Google Scholar
Badoux, D. M. 1964. Some remarks on size trends in mammalian evolution of the Holocene in Sumatra, with some additional notes on the Sampung fauna from Java. Saugetierkundliche Mitteilungen 1:112.Google Scholar
Bard, E., Arnold, M., Duprat, J., Moyes, J., and Duplessy, J. C. 1987. Bioturbation effects on abrupt climatic changes recorded in deep sea sediments. Correlation between 18O profiles and accelerated 14C dating. Pp. 263278. In Berger, W. H., and Labeyrie, L. D. (eds.), Abrupt Climatic Changes: Evidence and Implications. D. Reidel; Dordrecht.CrossRefGoogle Scholar
Barnett, R. J. 1977. Bergmann's rule and variation in structures related to feeding in the gray squirrel. Evolution 31:538545.CrossRefGoogle ScholarPubMed
Bar-Yosef, O., Goldberg, P., and Leveson, T. 1974. Late Quaternary stratigraphy and prehistory in Wadi Fazael, Jorday Valley: a preliminary report. Paleorient 2:415428.CrossRefGoogle Scholar
Bergmann, C. 1847. Uber die Verhaltnisse der Warmekonomie der Thiere zu ihrer Grosse. Gottingen Studien 3:595708.Google Scholar
Boyce, M. S. 1979. Seasonality and patterns of natural selection for life histories. American Naturalist 114:569583.CrossRefGoogle Scholar
Brown, W. L., and Wilson, E. O. 1956. Character displacement. Systematic Zoology 5:4964.CrossRefGoogle Scholar
Chetboun, R., and Tchernov, E. 1983. Temporal and spatial morphological variation in Meriones tristrami (Rodentia: Gerbillidae) from Israel. Israel Journal of Zoology 32:6390.Google Scholar
Coope, G. R., and Angus, R. B. 1975. An ecological study of a temperate interlude in the middle of the last glaciation based on fossil coleopterans from Isleworth, Middlesex. Journal of Animal Ecology 44:365391.CrossRefGoogle Scholar
Corbet, G. B. 1978. The Mammals of the Palaearctic Region: A Taxonomic Review. Publication no. 788, British Museum (Natural History). Cornell University Press; Ithaca, New York.Google Scholar
Creighton, G. K. 1980. Static allometry of mammalian teeth and the correlation of tooth size and body size in contemporary mammals. Journal of Zoology (London) 191:435443.CrossRefGoogle Scholar
Danin, A. 1985. Paleoclimates in Israel: evidence for weathering patterns of stones in and near archaeological sites. Bulletin of the American School of Oriental Resesarch 259:3343.CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Gundestrup, N., Hammer, C. V., Kristinsdottir, P., and Reek, N. 1982. A new Greenland deep ice core. Science 218:12731277.CrossRefGoogle ScholarPubMed
Davis, S. 1977. Size variation of the fox, Vulpes vulpes, in the Palaearctic region today, and in Israel during the late Quaternary. Journal of Zoology (London) 182:343351.CrossRefGoogle Scholar
Davis, S.J.M. 1981. The effects of temperature change and domestication on the body size of late Pleistocene to Holocene mammals of Israel. Paleobiology 7:101114.CrossRefGoogle Scholar
Dayan, T., and Tchernov, E. 1988. On the first occurrence of the common weasel (Mustela nivalis) in the fossil record of Israel. Mammalia 52:165168.CrossRefGoogle Scholar
Dayan, T., Simberloff, D., Tchernov, E., and Yom-Tov, Y. 1989a. Inter- and intraspecific character displacement in mustelids. Ecology 70:15261539.CrossRefGoogle Scholar
Dayan, T., Tchernov, E., Yom-Tov, Y., and Simberloff, D. 1989b. Ecological character displacement in Saharo-Arabian Vulpes: outfoxing Bergmann's rule. Oikos 55:263272.CrossRefGoogle Scholar
Dayan, T., Simberloff, D., Tchernov, E., and Yom-Tov, Y. 1990. Feline canines: community-wide character displacement among the small cats of Israel. American Naturalist 136:3960.CrossRefGoogle Scholar
Dayan, T., Simberloff, D., Tchernov, E., and Yom-Tov, Y. 1991. Canine carnassials: character displacement in the wolves, jackals, and foxes of Israel. Biological Journal of the Linnaean Society (in press).Google Scholar
Ellerman, J. R., and Morrison-Scott, T.C.S. 1951. Checklist of Palaearctic and Indian mammals 1758-1946. British Museum (Natural History); London.Google Scholar
Erlinge, S. 1987. Why do European stoats Mustela erminea not follow Bergmann's rule? Holarctic Ecology 10:3339.Google Scholar
Fairley, J. S. 1981. A north-south cline in the size of the Irish stoat. Proceedings of the Royal Irish Academy, Section B 80B:7990.Google Scholar
Ferguson, W. W. 1981. The systematic position of Canis aureus lupaster (Carnivora: Canidae) and the occurrence of Canis lupus in North Africa, Eqypt and Sinai. Mammalia 45:459465.CrossRefGoogle Scholar
Fritts, C. 1976. Tree Rings and Climate. Academic Press; New York.Google Scholar
Fuentes, E. R., and Jaksić, F. M. 1979. Latitudinal size variation of Chilean foxes: test of alternative hypotheses. Ecology 60:4347.CrossRefGoogle Scholar
Garn, S. M., and Lewis, A. B. 1958. Tooth-size, body-size and “giant” fossil man. American Anthropologist 60:874880.Google Scholar
Geist, V. 1987. Bergmann's rule is invalid. Canadian Journal of Zoology 65:10351038.CrossRefGoogle Scholar
Gingerich, P. D. 1977. Correlation of tooth size and body size in living hominoid primates, with a note on relative brain size in Aegyptopithecus and Proconsul. American Journal of Physical Anthropology 47:395398.CrossRefGoogle ScholarPubMed
Gingerich, P. D. 1989. Body size of Paleocene-Eocene Coryphodon and other large land mammals in relation to global temperature change. Geological Society of America Abstracts with Programs 21(6):A113A114.Google Scholar
Gingerich, P. D., and Smith, B. H. 1984. Allometric scaling in the dentition of primates and insectivores. Pp. 257272. In Jungers, W. L. (ed.), Size and Scaling in Primate Biology. Plenum Press; New York.Google Scholar
Gingerich, P. D., and Winkler, D. A. 1979. Patterns of variation and correlation in the dentition of the red fox, Vulpes vulpes. Journal of Mammalogy 60:691704.CrossRefGoogle Scholar
Gingerich, P. D., Smith, B. H., and Rosenberg, K. 1982. Allometric scaling on the dentition of primates and prediction of body weight from tooth size in fossils. American Journal of Physical Anthropology 58:81100.CrossRefGoogle ScholarPubMed
Goldberg, P. 1977. Late Quaternary stratigraphy of Gebel Maghara. Qedem 7:1131.Google Scholar
Gould, S. J. 1975. On the scaling of tooth size in mammals. American Zoologist 15:351362.CrossRefGoogle Scholar
Grant, P. R. 1972. Convergent and divergent character displacement. Biological Journal of the Linnaean Society 4:3968.CrossRefGoogle Scholar
Grant, P. R. 1975. The classical case of character displacement. Evolutionary Biology 8:237337.Google Scholar
Guilday, J. E. 1971. The Pleistocene history of the Appalachian mammal fauna. Virginia Polytechnic Research Institute Monograph 4:233262.Google Scholar
Hayward, J. S. 1965. Metabolic rate and its temperature-adaptive significance in six geographic races of Peromyscus. Canadian Journal of Zoology 43:309323.CrossRefGoogle ScholarPubMed
Henderson, A. M., and Corruccini, R. S. 1976. Relationship between tooth size and body size in American Blacks. Journal of Dental Research 55:9496.CrossRefGoogle ScholarPubMed
Hendey, Q. B. 1974. The late Cenozoic Carnivora of the southwestern Cape Province. Annals of the South African Museum 63:1369.Google Scholar
Holmes, T. 1987. Sexual dimorphism in North American weasels with a phylogeny of Mustelidae. Ph.D. dissertation, Department of Systematics and Ecology, University of Kansas, Lawrence, Kansas.Google Scholar
Horowitz, A. (ed.). 1979. The Quaternary of Israel. Academic Press; New York.Google Scholar
Humphrey, S. R., Bonaccorso, F. J., and Zinn, T. L. 1983. Guild structure of surface gleaning bats in Panama. Ecology 64:284294.CrossRefGoogle Scholar
Hutchinson, G. E. 1959. Homage to Santa Rosalia, or why are there so many kinds of animals? American Naturalist 93:145159.CrossRefGoogle Scholar
Irving, L. 1957. The usefulness of Scholander's views on adaptive insulation of animals. Evolution 11:257259.CrossRefGoogle Scholar
James, F. C. 1968. A more precise definition of Bergmann's rule. American Zoologist 8:815816.Google Scholar
James, F. C. 1970. Geographic size variation in birds and its relationship to climate. Ecology 51:365390.CrossRefGoogle Scholar
Johnston, R. F., and Selander, R. K. 1971. Evolution in the house sparrow. II. Adaptive differentiation in North American populations. Evolution 25:128.CrossRefGoogle ScholarPubMed
Kiltie, R. A. 1984. Size ratios among sympatric Neotropical cats. Oecologia 61:411416.CrossRefGoogle ScholarPubMed
King, C. M. 1989. The advantages and disadvantages of small size to weasels, Mustela species. Pp. 302334. In Gittleman, J. L. (ed.), Carnivore Behavior, Ecology, and Evolution. Comstock Publishing Associates; Ithaca, New York.CrossRefGoogle Scholar
King, C. M., and Moody, J. E. 1982. The biology of the stoat (Mustela erminea) in the national parks of New Zealand. New Zealand Journal of Zoology 9:49144.CrossRefGoogle Scholar
Klein, R. G. 1986. Carnivore size and Quaternary climatic change in southern Africa. Quaternary Research 26:153170.CrossRefGoogle Scholar
Klein, R. G., and Scott, K. 1989. Glacial/interglacial size variation in fossil spotted hyenas (Crocuta crocuta) from Britain. Quaternary Research 32:8895.CrossRefGoogle Scholar
Koch, P. L. 1986. Clinal geographic variation in mammals: implications for the study of chronoclines. Paleobiology 12:269281.CrossRefGoogle Scholar
Kolb, H H. 1978. Variation in the size of foxes in Scotland. Biological Journal of the Linnaean Society 10:291304.CrossRefGoogle Scholar
Kurtén, B. 1953. On the variation and population dynamics of fossil and Recent mammal populations. Acta Zoologica Fennica 76:1122.Google Scholar
Kurtén, B. 1958. The bears and hyenas of the interglacials. Quarternaria 4:6981.Google Scholar
Kurtén, B. 1959. Rates of evolution in fossil mammals. Cold Spring Harbor Symposia on Quantitative Biology 24:205215.CrossRefGoogle ScholarPubMed
Kurtén, B. 1965. The Carnivora of the Palestine caves. Acta Zoologica Fennica 107:174.Google Scholar
Kurtén, B. 1967. Some quantitative approaches to dental microevolution. Journal of Dental Research 46:817828.CrossRefGoogle ScholarPubMed
Kurtén, B. 1973. Geographic variation in size in the puma (Felis concolor). Commentationes Biologicae 63:18.Google Scholar
Lavelle, C.L.B. 1974. Relationship between tooth and skull size. Journal of Dental Research 53:1301.CrossRefGoogle ScholarPubMed
Legendre, S., and Roth, C. 1988. Correlation of carnassial tooth size and body weight in Recent carnivores (Mammalia). Historical Biology 1:8598.CrossRefGoogle Scholar
Lindstedt, S. L., and Boyce, M. S. 1985. Seasonality, fasting endurance, and body size in mammals. American Naturalist 125:873878.CrossRefGoogle Scholar
Lundelius, E. L., Graham, R. W., Anderson, E., Guilday, J., Holman, J. A., Steadman, D. W., and Webb, S. D. 1983. Terrestrial vertebrate faunas. Pp. 311353. In Porter, S. C. (ed.), Late-Quaternary Environments of the United States, Vol. 1, The Late Pleistocene. University of Minnesota Press; Minneapolis.Google Scholar
Magaritz, M. 1986. Environmental changes recorded in the Upper Pleistocene along the desert boundary, southern Israel. Palaeogeography Palaeoclimatology Palaeoecology 53:213229.CrossRefGoogle Scholar
Mayr, E. 1956. Geographical gradients and climatic adaptation. Evolution 10:105108.CrossRefGoogle Scholar
Mayr, E. 1963. Animal Species and Evolution. Belknap Press, Harvard University Press; Cambridge, Mass.CrossRefGoogle Scholar
McNab, B. K. 1971. On the ecological significance of Bergmann's rule. Ecology 52:845854.CrossRefGoogle Scholar
Pankakoski, E., and Nurmi, K. 1986. Skull morphology of Finnish muskrat: geographic variation, age differences and sexual dimorphism. Annales Zoologici Fennici 23:132.Google Scholar
Petrov, O. V. 1962. The validity of Bergmann's Rule as applied to intraspecific variation in the ermine. Vestnik Leningrad University, Seriia Biologii 9:144148.Google Scholar
Purdue, J. R. 1980. Clinal variation of some mammals during the Holocene in Missouri. Quaternary Research 13:242258.CrossRefGoogle Scholar
Ralls, K., and Harvey, P. H. 1985. Geographic variation in size and sexual dimorphism of North American weasels. Biological Journal of the Linnaean Society 25:119167.CrossRefGoogle Scholar
Reig, S. 1990. Geographic variation of pine marten and beech marten in Europe. Proceedings of the 70th Annual Meeting of the American Society of Mammalogists, Frostburg, Maryland.Google Scholar
Rensch, B. 1939. Klimatische auslese von Frossenvariaten. Archiv für Naturgeschichte; Zeitschrift für Systematische Zoologie (Neue Folgel) 8:89129.Google Scholar
Rosenzweig, M. L. 1968. The strategy of body size in mammalian carnivores. American Midland Naturalist 80:299315.CrossRefGoogle Scholar
Roth, V. L. 1981. Constancy of size ratios of sympatric species. American Naturalist 118:394404.CrossRefGoogle Scholar
Schauenberg, P. 1977. La stature du chat forestier Felis silvestris Schreb. et la variabilité morphologique de l'espèce. Révue Suisse de Zoologie 84:323337.CrossRefGoogle Scholar
Scholander, P. F. 1955. Evolution of climatic adaptation in homeotherms. Evolution 9:1526.CrossRefGoogle Scholar
Scholander, P. F. 1956. Climatic rules. Evolution 10:3940.CrossRefGoogle Scholar
Simberloff, D., and Boecklen, W. J. 1981. Santa Rosalia reconsidered: size ratios and competition. Evolution 35:12061228.CrossRefGoogle ScholarPubMed
Strong, D. R., Szyska, L. A., and Simberloff, D. 1979. Tests of community-wide character displacement against null hypotheses. Evolution 33:897913.Google ScholarPubMed
Tchernov, E. 1968. Succession of Rodent Faunas during the Upper Pleistocene of Israel. Parey; Berlin.Google Scholar
Tchernov, E. 1979. Polymorphism, size trends and Pleistocene paleoclimatic response of the subgenus Sylvaemus (Mammalia: Rodentia) in Israel. Israel Journal of Zoology 28:131159.Google Scholar
Tchernov, E., and Bar-Yosef, O. 1982. Animal exploitation in the pre-pottery Neolithic B period at Wadi Ibeik, southern Sinai. Paleorient 8:1737.CrossRefGoogle Scholar
Tessier, L., Courteaux, M., and Guiot, Y. 1986. An attempt at an absolute dating of a sediment from the last glacial recurrence through correlations between pollen analytical and treering data. Pollen et Spores 28:6176.Google Scholar
Van Valkenburgh, V. 1988. Trophic diversity in past and present guilds of large predatory mammals. Paleobiology 14:155173.CrossRefGoogle Scholar
Yom-Tov, Y., and Nix, H. 1986. Climatological correlates for body size of five species of Australian mammals. Biological Journal of the Linnaean Society 29:245262.CrossRefGoogle Scholar
Zink, R. M., and Remsen, J. V. Jr. 1986. Evolutionary processes and patterns of geographic variation in birds. Current Ornithology 4:169.Google Scholar