Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T18:37:10.809Z Has data issue: false hasContentIssue false

Bringing planktonic crinoids back to the bottom: Reassessment of the functional role of scyphocrinoid loboliths

Published online by Cambridge University Press:  06 November 2019

Przemysław Gorzelak
Affiliation:
Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818Warsaw, Poland. E-mail: [email protected], [email protected], [email protected]
Dorota Kołbuk
Affiliation:
Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818Warsaw, Poland. E-mail: [email protected], [email protected], [email protected]
Mariusz A. Salamon
Affiliation:
Department of Earth Sciences, University of Silesia in Katowice, Będzińska Street 60, 41–200 Sosnowiec, Poland. E-mail: [email protected]
Magdalena Łukowiak
Affiliation:
Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818Warsaw, Poland. E-mail: [email protected], [email protected], [email protected]
William I. Ausich
Affiliation:
School of Earth Sciences, Ohio State University, 125 South Oval Mall, Columbus, Ohio, U.S.A. E-mail: [email protected]
Tomasz K. Baumiller
Affiliation:
Museum of Paleontology, University of Michigan, 1105 N University Avenue, Ann Arbor, Michigan, U.S.A. E-mail: [email protected]

Abstract

Living crinoids are exclusively passive suspension feeders and benthic as adults. However, in the past they adapted to a broad range of ecological niches. For instance, the stratigraphically important middle Paleozoic scyphocrinoids are hypothesized to have been planktonic, employing their inferred gas-filled globular, chambered structure at the distal end of the stem, the so-called lobolith, as a buoyancy device with the crinoid calyx suspended below it. Here, we evaluate this hypothesis using evidence from skeletal micromorphology and theoretical biomechanical modeling. Lobolith walls are typically composed of ossicles, which are exclusively composed of constructional labyrinthic stereom. In plates from the distal side of the lobolith, this stereom extends into microperforate stereom layer, forming wavy ridges and spines. No microscale adaptations for preventing gas leaks and/or ingress of water (such as internal and external imperforate stereom layers) are known. Furthermore, theoretical calculations suggest that the scyphocrinoid tow-net mode of feeding would have resulted in small relative velocities between the towed filter and the ambient water, thus making it an ineffective passive filter feeder. We suggest that the lobolith of these crinoids acted as a modified holdfast rather than as a floating buoy. Its globular shape and distally positioned microspines served as adaptations for living in unconsolidated sediments, analogous to iceberg- and snowshoe-like strategies used by some mollusks and brachiopods. Like modern isocrinids, scyphocrinoids could have maintained an upright feeding posture by extending the distal portion of the stalk along the bottom. In this recumbent posture, the distal part of the stalk with the lobolith might have functioned as a drag anchor. As a consequence of the ~3-m-long stem, even with this posture, the benthic scyphocrinoids could have risen to the highest epifaunal tier in the Paleozoic.

Type
Articles
Copyright
Copyright © The Paleontological Society. All rights reserved 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abel, O. 1920. Lehrbuch der Paläozoologie. Gustav Fischer, Jena.Google Scholar
Ausich, W. I. 1980. A model for niche differentiation in Lower Mississippian crinoid communities. Journal of Paleontology 54:273288.Google Scholar
Ausich, W. I., and Bottjer, D. J.. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science 216:173174.CrossRefGoogle ScholarPubMed
Barrande, J., and Waagen, W.. 1887. Systême silurien du centre de la Bohême. I: Recherches paléontologiques, 7, Classedes Echinodermes 1:1233.Google Scholar
Bather, F. A. 1907. The discovery in West Cornwall of a Silurian crinoid characteristic of Bohemia. Transactions of the Royal Geological Society of Cornwall 13:191197.Google Scholar
Bauer, J. C., and Young, C. M.. 2000. Epidermal lesions and mortality caused by vibriosis in deep-sea Bahamian echinoids: a laboratory study. Diseases of Aquatic Organisms 39:193199.CrossRefGoogle ScholarPubMed
Baumiller, T. K. 1997. Crinoid functional morphology. In Maples, C. and Waters, J., eds. Geobiology of echinoderms. Paleontological Society Papers 3: 4568. Paleontological Society, Knoxville, Tenn.Google Scholar
Baumiller, T. K. 2008. Crinoid ecological morphology. Annual Review of Earth and Planetary Sciences 36:221249.CrossRefGoogle Scholar
Baumiller, T. K., and Messing, C. G.. 2007. Stalked crinoid locomotion, and its ecological and evolutionary implications. Palaeontologia Electronica 10(1):2A.Google Scholar
Baumiller, T. K., Salamon, M. A., Gorzelak, P., Mooi, R., Messing, Ch. G., and Gahn, F. J.. 2010. Post-Paleozoic crinoid radiation in response to benthic predation preceded the Mesozoic marine revolution. Proceedings of the National Academy of Sciences USA 107:58935896.CrossRefGoogle ScholarPubMed
Brett, C. E. 1981. Terminology and functional morphology of attachment structures in pelmatozoan echinoderms. Lethaia 14:343370.CrossRefGoogle Scholar
Brett, C. E. 1984. Autecology of Silurian pelmatozoan echinoderms. Special Papers in Palaeontology 32:87120.Google Scholar
Brett, C. E., Moffat, H. A., and Taylor, W. L.. 1997. Echinoderm taphonomy, taphofacies, and Lagerstätten. In Waters, J. A., and Maples, C. G., eds. Geobiology of echinoderms. Paleontological Society Papers 3:147190. Paleontological Society, Knoxville, Tenn.Google Scholar
Corriga, M. G., Corradini, C., Haude, R., and Walliser, O. H.. 2014. Conodont and crinoid stratigraphy of the upper Silurian and Lower Devonian scyphocrinoid beds of Tafilalt, southeastern Morocco. GFF 136:6569.CrossRefGoogle Scholar
Donovan, S. K., and Lewis, D. N.. 2009. The mid-Palaeozoic camerate crinoid Scyphocrinites Zenker in southwest England. Bulletin of the Mizunami Fossil Museum 35:97100.Google Scholar
Donovan, S. K., and Miller, R. F.. 2014. The camerate crinoid Scyphocrinites Zenker in the Upper Silurian or Lower Devonian of New Brunswick, Canada. Atlantic Geology 50:290296.CrossRefGoogle Scholar
Ehrenberg, K. 1926. Zur Frage der biologischen Deutung der (Camarocrinus) Wurzeln (Lobolithen) von Scyphocrinus. Paläontologische Zeitschrift 8:199220.CrossRefGoogle Scholar
Gahn, F. J., and Baumiller, T. K.. 2003. Infestation of Middle Devonian (Givetian) camerate crinoids by platyceratid gastropods and its implications for the nature of their biotic interactions. Lethaia 36:7182.CrossRefGoogle Scholar
Gorzelak, P. 2018. Microstructural evidence for stalk autotomy in Holocrinus—the oldest stemgroup isocrinid. Palaeogeography, Palaeoclimatology, Palaeoecology 506:202207.CrossRefGoogle Scholar
Gorzelak, P., and Zamora, S.. 2013. Stereom microstructures of Cambrian echinoderms revealed by cathodoluminescence (CL). Palaeontologia Electronica 16(3):32AGoogle Scholar
Gorzelak, P., and Zamora, S.. 2016. Understanding form and function of the stem in early flattened echinoderms (pleurocystitids) using a microstructural approach. PeerJ 4:e1820.CrossRefGoogle ScholarPubMed
Gorzelak, P., Salamon, M. A., and Baumiller, T. K.. 2012. Predator-induced macroevolutionary trends in Mesozoic crinoids. Proceedings of the National Academy of Sciences USA 109:70047007.CrossRefGoogle ScholarPubMed
Gorzelak, P., Głuchowski, E., and Salamon, M. A.. 2014. Reassessing the improbability of a muscular crinoid stem. Scientific Reports 4:6049.CrossRefGoogle ScholarPubMed
Gorzelak, P., Głuchowski, E., Brachaniec, T., Łukowiak, M., and Salamon, M. A.. 2017. Skeletal microstructure of uintacrinoid crinoids and inferences about their mode of life. Palaeogeography, Palaeoclimatology, Palaeoecology 468:200207.CrossRefGoogle Scholar
Grant, R. E. 1972. The lophophore and feeding mechanism of the Productidina (Brachiopoda). Journal of Paleontology 46:213249.Google Scholar
Grant, R. E. 1975. Methods and conclusions in functional analysis: a reply. Lethaia 8:3134.CrossRefGoogle Scholar
Haeckel, E. 1896. Systematische Phylogenie. Entwurf eines natürlichen Systems der Organismen auf grund ihrer Stammesgeschichte. Theil 2.Wirbellose Thiere. G. Reimer, Berlin.Google Scholar
Hagdorn, H. 2011. Triassic: the crucial period of post-Palaeozoic crinoid diversification. Swiss Journal of Palaeontology 130:91112.CrossRefGoogle Scholar
Hagdorn, H., Wang, X., and Wang, C.. 2007. Palaeocology of the pseudoplanktonic Triassic crinoid Traumatocrinus from Southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology 247:181196.CrossRefGoogle Scholar
Hall, J. 1879. Notice of some remarkable crinoidal forms from the lower Helderberg group. Annual Report on the New York State Museum of Natural History 28:205210.Google Scholar
Haude, R. 1972. Bau und Funktion der Scyphocrinites-Lobolithen. Lethaia 5:95125.CrossRefGoogle Scholar
Haude, R. 1992. Scyphocrinoiden, die Bojen-Seelilien im hohen Silur-tiefen Devon. Palaeontographica Abteilung A 222:141187.Google Scholar
Haude, R. 1998. Seelilien mit Schwimmboje: Die Scyphocrinoiden. Fossilien 4:217225.Google Scholar
Haude, R., Corriga, M. G., Corradini, C., and Walliser, O. H.. 2014. Bojen-Seelilien (Scyphocrinitidae, Echinodermata) in neudatierten Schichten vom oberen Silur bis untersten Devon Südost-Marokkos. In Wiese, F., Reich, M., and Arp, G., eds. “Spongy, slimy, cosy & more…” Commemorative volume in celebration of the 60th birthday of Joachim Reitner. Göttingen Contributions to Geosciences 77:129145.Google Scholar
Hess, H. 1999. Scyphocrinitids from the Silurian−Devonian Boundary of Morocco. Pp. 93102in Hess, H., Ausich, W. I., Brett, C. E., and Simms, M. J., eds. Fossil Crinoids. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Hess, H. 2010. Part T (revised), vol. 1, chap. 19: Paleoecology of pelagic crinoids. Treatise Online 16:133.Google Scholar
Hess, H., and Messing, C. G.. 2011. Crinoidea. Pp. 1261 in Echinodermata 2, Revised, Crinoidea 3, Part T of Selden, P. A., ed. Treatise on invertebrate paleontology. University of Kansas Paleontological Institute, Lawrence.Google Scholar
Heywood, K. J. 1996. Diel vertical migration of zooplankton in the Northeast Atlantic. Journal of Plankton Research 18:163184.CrossRefGoogle Scholar
Hoerner, S. F. 1965. Fluid-dynamic drag: theoretical, experimental and statistical information. Hoerner Fluid Dynamics, Bakersfield, Calif.Google Scholar
Horný, R. J. 2000. Mode of life of some Silurian and Devonian platyceratids. Bulletin of Geosciences 75:135143.Google Scholar
Huber, M. S., and Gibson, M. A.. 2007. Preliminary interpretation of paragenesis of mineral and sediment infill in Scyphocrinites loboliths from the Lower Devonian Ross Formation of western Tennessee. Geological Society of America Abstracts with Programs 39(2):35.Google Scholar
Jacobs, D. K. 1996. Chambered cephalopod shells, buoyancy, structure and decoupling: history and red herrings. Palaios 11:610614CrossRefGoogle Scholar
Jaekel, O. 1904. Über sogenannte Lobolothen. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 56:5963.Google Scholar
Jaekel, O. 1918. Phylogenie und System der Pelmatozoen. Palaeontologisches Zeitschrift 3(1):1128.Google Scholar
Janevski, G. A., and Baumiller, T. K.. 2010. Could a stalked crinoid swim? A biomechanical model and characteristics of swimming crinoids. Palaios 25:588596.CrossRefGoogle Scholar
Jangoux, M. 1984. Diseases of echinoderms. Helgoländer Meeresuntersuchungen 37:207216.CrossRefGoogle Scholar
Kirk, E. 1911. The structure and relationships of certain eleutherozoic pelmatozoa. U.S. National Museum Proceedings 141:1137.CrossRefGoogle Scholar
Kondo, J., Sasano, Y., and Ishii, T.. 1979. On wind-driven current and temperature profiles with diurnal period in the oceanic planetary boundary layer. Journal Physical Oceanography 9:360372.2.0.CO;2>CrossRefGoogle Scholar
Lauder, G. V. 1995. On the inference of function from structure. Pp. 118in Thomason, J. J., ed. Functional morphology in vertebrate paleontology. Cambridge: Cambridge University Press.Google Scholar
Lee, Ch. P. 2005. Discovery of plate-type scyphocrinoid loboliths in the uppermost Pr̆ídolían–lowermost Lochkovian Upper Setul limestone of Peninsular Malaysia. Geological Journal 40:331342.CrossRefGoogle Scholar
Lumpkin, R., and Johnson, C. G.. 2013. Global ocean surface velocities from drifters: mean, variance, El Nino–Southern Oscillation response, and seasonal cycle. Journal of Geophysical Research: Oceans 118:29923006.Google Scholar
Macurda, D. B. Jr., and Meyer, D. L.. 1974. Feeding posture of modern stalked crinoids. Nature 247:394396.CrossRefGoogle Scholar
McKenzie, J. D., and Moore, P. G.. 1981. The microdistribution of animals associated with the bulbous holdfasts of Saccorhiza polyschides (Phaeophyta). Ophelia 20:201213.CrossRefGoogle Scholar
Messing, C. G., Neumann, A. C., and Lang, J. C.. 1990. Biozonation of deep-water lithoherms and associated hard-grounds in the northeastern Straits of Florida. Palaios 5:1533.CrossRefGoogle Scholar
Messing, C. G., David, J., Roux, M., Améziane, N., and Baumiller, T. K.. 2007. In situ stalk growth rates in tropical western Atlantic sea lilies (Echinodermata: Crinoidea). Journal of Experimental Marine Biology and Ecology 353:211220.CrossRefGoogle Scholar
Meyer, D. L., and Macurda, D. B. Jr. 1977. Adaptive radiation of the comatulid crinoids. Paleobiology 3:7482.CrossRefGoogle Scholar
Meyer, D. L., and Macurda, D. B. Jr. 1980. Ecology and distribution of shallow-water crinoids of Palau and Guam. Micronesica 16:5999.Google Scholar
Meyer, D. L., LaHaye, C. A., Holland, N. D., Arenson, A. C., and Strickler, J. R.. 1984. Time-lapse cinematography of feather stars (Echinodermata: Crinoidea) on the Great Barrier Reef, Australia: demonstrations of posture changes, locomotion, spawning and possible predation by fish. Marine Biology 78:179184.CrossRefGoogle Scholar
Milsom, C.V., Simms, M. J., and Gale, A. S.. 1994. Phylogeny and palaeobiology of Marsupites and Uintacrinus. Palaeontology 37:595607.Google Scholar
Peng, L. C. 2001. Occurrences of Scyphocrinites loboliths in the Upper Silurian Upper Setullimestone of Pulau Langgun, Langkawi, Kedah and Guar Sanai, Berseri, Perlis. Pp. 99–104 in Geological Society of Malaysia Annual Geological Conference, Pangkor Island, Perak Darul Ridzuan, Malaysia, June 2–3 2001.Google Scholar
Plotnick, R., and Bauer, J.. 2014. Crinoids aweigh: experimental biomechanics of Ancyrocrinus holdfasts. In Hembree, D., Platt, B., and Smith, J., eds. Experimental approaches to understanding fossil organisms. Topics in Geobiology 41:413–20. Springer, Dordrecht, Netherlands.Google Scholar
Plotnick, R. E., and Baumiller, T. K.. 2000. Invention by evolution: functional analysis in paleobiology. Paleobiology 26:305323.CrossRefGoogle Scholar
Plotnick, R. E., Ebey, C. M., and Zinga, A.. 2016. A radicle solution: morphology and biomechanics of the Eucalyptocrinites “root” system. Lethaia 49:130144.CrossRefGoogle Scholar
Price, J. F., Weller, R. A., and Schudlich, R. R.. 1987. Wind-driven ocean currents and Ekman transport. Science 238:15341538.CrossRefGoogle ScholarPubMed
Prokop, R. J., and Petr, V.. 1987. Marhoumacrinus legrandi, gen. et sp. n. (Crinoidea, Camerata) from Upper Silurian–lowermost Devonian of Algeria. Sborník Národního Muzea v Praze 43:114.Google Scholar
Prokop, R. J., and Petr, V.. 1992. A note on the phylogeny of scyphocrinitid crinoids. Acta Universitatis Carolinae, Geologica 1–2:3136.Google Scholar
Prokop, R. J., and Petr, V.. 2001. Remarks on palaeobiology of juvenile scyphocrinitids and marhoumacrinids (Crinoidea, Camerata) in the Bohemian uppermost Silurian and lowermost Devonian. Journal of the Czech Geological Society 46:259268.Google Scholar
Racki, G., Baliński, A., Wrona, R., Małkowski, K., Drygant, D., and Szaniawski, H.. 2012. Faunal dynamics across the Silurian–Devonian positive isotope excursions (δ13C, δ18O) in Podolia, Ukraine: comparative analysis of the Ireviken and Klonk events. Acta Palaeontologica Polonica 57:795832.CrossRefGoogle Scholar
Ray, B. S. 1980. A study of the crinoid genus Camarocrinus in the Hunton Group of Pontotoc County, Oklahoma. Baylor Geological Studies 39:116.Google Scholar
Reyment, R. A. 1986. Nekroplanktonic dispersal of echinoid tests. Palaeogeography, Palaeoclimatology, Palaeoecology 52:347349.CrossRefGoogle Scholar
Richards, S. A., Possingham, H. P., and Noye, J.. 1996. Diel vertical migration: modelling light-mediated mechanisms. Journal of Plankton Research 18:21992222.CrossRefGoogle Scholar
Roux, M. 1980. Les Crinoïdes pédonculés (Echinodermes) photographiés sur les dorsales océanique de l'Atlantique et du Pacifique: implications biogéographiques. Comptes rendus de l'Académie des Sciences 291:901904.Google Scholar
Rudwick, M. J. S. 1964. The inference of function from structure in fossils. British Journal for the Philosophy of Science 15:2740.CrossRefGoogle Scholar
Scheibling, R. E. 1984. Echinoids, epizootics and ecological stability in the rocky subtidal off Nova Scotia, Canada. Helgoländer Meeresuntersuchungen 37:233242.CrossRefGoogle Scholar
Schuchert, C. 1904. On Siluric and Devonic Cystidea and Camarocrinus. Smithsonian Miscellaneous Collections 47:201272.Google Scholar
Schudlich, R. R., and Price, J. F.. 1998. Observations of seasonal variation in the Ekman layer. Journal of Physical Oceanography 28:11871204.2.0.CO;2>CrossRefGoogle Scholar
Seilacher, A., and Gishlick, A. D.. 2014. Morphodynamics. CRC Press, Boca Raton, Fla.CrossRefGoogle Scholar
Seilacher, A., and Hauff, R. B.. 2004. Constructional morphology of pelagic crinoids. Palaios 20:224240.CrossRefGoogle Scholar
Seilacher, A., and MacClintock, C.. 2005. Crinoid anchoring strategies for soft-bottom dwelling. Palaios 20:224240.CrossRefGoogle Scholar
Signor, P. 1982. A critical re-evaluation of the paradigm method of constructional inference. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 164:5963.Google Scholar
Simms, M. J. 1986. Contrasting lifestyles in Lower Jurassic crinoids: a comparison of benthic and pseudopelagic Isocrinida. Palaeontology 29:475493.Google Scholar
Simms, M. J. 2001. Stereom microstructure of columnal latera: a character for assessing phylogenetic relationships in articulate crinoids. Swiss Journal of Palaeontology 130:143154.CrossRefGoogle Scholar
Smith, A. B. 1980. Stereom microstructure of the echinoid test. Special Papers in Palaeontogy 25:181.Google Scholar
Springer, F. 1917. On the crinoid genus Scyphocrinus and its bulbous root Comarocrinus. Smithsonian Institution Publication 2871:1239.Google Scholar
Strimple, H. L. 1963. Crinoids of the Hunton Group (Devonian–Silurian) of Oklahoma. Oklahoma Geological Survey Bulletin 100:1169.Google Scholar
Sun, Y. C., and Szetu, S. S.. 1947. The stratigraphical and biological position of the species “Camarocrinus asiaticus.” Bulletin of the Geological Society of China 27:243252.CrossRefGoogle Scholar
Thayer, C. W. 1975. Morphologic adaptations of benthic invertebrates to soft substrata. Journal of Marine Research 33:177189.Google Scholar
Ubaghs, G. 1978a. Camerata. Pp. T408T519in Ubaghs, G. et al. , Echinodermata 2. Part T of Moore, R. C. and Teichert, C., eds. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Ubaghs, G. 1978b. Skeletal morphology of fossil crinoids. Pp. T58T216in Ubaghs, G., Echinodermata 2. Part T of Moore, R. C. and Teichert, C., eds. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Valenzuela-Ríos, J. I., and Liao, J.C.. 2012. Color/facies changes and global events, a hoax? A case study from the Lochkovian (Lower Devonian) in the Spanish Central Pyrenees. Palaeogeography, Palaeoclimatology, Palaeoecology 367–368:219230.CrossRefGoogle Scholar
Vogel, S. 1981. Life in moving fluids. Willard Grant Press, Boston.Google Scholar
Wieczorek, J. 1979. Geopetal structures as indicators of top and bottom. Annales de la Societe Geologique de Pologne 49(3–4):215221.Google Scholar
Zamora, S., Mayoral, E., Vintaned, J. A. G., Bajo, S., and Espílez, E., 2008. The infaunal echinoid Micraster: taphonomic pathways indicated by sclerozoan trace and body fossils from the Upper Cretaceous of northern Spain. Geobios 41:1529.CrossRefGoogle Scholar