Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T21:44:49.623Z Has data issue: false hasContentIssue false

Body size, energetics, and the Ordovician restructuring of marine ecosystems

Published online by Cambridge University Press:  08 April 2016

Seth Finnegan
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, 450 Serra Mall, Building 320, Stanford, California 94305. E-mail: [email protected]
Mary L. Droser
Affiliation:
Department of Earth Sciences, University of California, Riverside, California 92521

Abstract

Major shifts in ecological dominance are one of the most conspicuous but poorly understood features of the fossil record. Here we examine one of the most prominent such shifts, the Ordovician shift from trilobite to brachiopod dominance of benthic ecosystems. Using an integrated database of high-resolution paleoecological samples and body size data, we show that while the average local richness and relative abundance of trilobites declined significantly through the Ordovician, the estimated standing biomass of trilobites, and by implication the amount of energy that they used, remained relatively invariant. This is attributable to an increase in the average body size of trilobite species in our data set, and especially to the widespread occurrence of the exceptionally large Middle-Late Ordovician trilobite genus Isotelus. Brachiopods increase in both mean body size and relative abundance throughout the Ordovician, so that estimates of brachiopod biomass and energetic use increase substantially between the Early and Late Ordovician. Although the data set includes a range of depositional environments, similar trends are observed in both shallow subtidal and deep subtidal settings. These results suggest that diversification of the Paleozoic Fauna did not come at the energetic expense of the Cambrian Fauna. The declining relative abundance of trilobites may reflect a combination of numerical dilution and the necessary energetic trade-offs between body size and abundance.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adrain, J. M., Westrop, S. R., Chatterton, B. D. E., and Ramsköld, L. 2000. Silurian trilobite alpha diversity and the end-Ordovician mass extinction. Paleobiology 26:625646.Google Scholar
Adrain, J. M., Edgecombe, G. D., Fortey, R. A., Hammer, O., Laurie, J. R., McCormick, T., Owen, A. W., Waisfeld, B. G., Webby, B. D., Westrop, S. R., and Zhou, Z.-y. 2004. Trilobites in Webby, et al. 2004.Google Scholar
Amati, L. 2004. Systematics and paleoecology of trilobites from the Late Ordovician Viola Group, south-central Oklahoma. . University of Oklahoma, Oklahoma City.Google Scholar
Bambach, R. K. 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic. Pp. 719746 in Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in recent and fossil benthic communities. Plenum, New York.CrossRefGoogle Scholar
Bambach, R. K. 1985. Classes and adaptive variety: the ecology of diversification in marine faunas through the Phanerozoic. In Valentine, J. W., ed. Phanerozoic diversity patters: profiles in macroevolution. Princeton University Press, Princeton, N.J. Google Scholar
Bambach, R. K. Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology 19:372397.Google Scholar
Banavar, J. R., Damuth, J., Maritan, A., and Rinaldo, A. 2002. Supply-demand balance and metabolic scaling. Proceedings of the National Academy of Sciences USA 99:1050610509.CrossRefGoogle ScholarPubMed
Benton, M. J. 1996. On the nonprevalence of competitive replacement in the evolution of tetrapods. Pp. 185210 in Jablonski, et al. 1996.Google Scholar
Benton, M. J. 1997. Models for the diversification of life. Trends in Ecology and Evolution 12:490495.Google Scholar
Blackburn, T. M., and Gaston, K. J. 1997. A critical assessment of the form of the interspecific relationship between abundance and body size in animals. Journal of Animal Ecology 66:233249.Google Scholar
Brett, C. E., McLaughlin, P. I., Cornell, S. R., and Baird, G. C. 2004. Comparative sequence stratigraphy of two classic Upper Ordovician successions, Trenton Shelf (New York-Ontario) and Lexington Platform (Kentucky-Ohio): implications for eustasy and local tectonism in eastern Laurentia. Palaeogeography, Palaeoclimatology, Palaeoecology 210:295329.CrossRefGoogle Scholar
Brown, J. H. 1995. Macroecology. University of Chicago Press, Chicago.Google Scholar
Bush, A. M., Bambach, R. K., and Daley, G. M. 2007. Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and late Cenozoic. Paleobiology 33:7697.Google Scholar
Chatterton, B. D. E., and Ludvigsen, R. 1976. Silicified Middle Ordovician trilobites from the South Nahanni River area, District of Mackenzie, Canada. Palaeontographica, Abteilung A 154:1106.Google Scholar
Churchill-Dickson, L. 2001. Late Ordovician increase in trilobite size and its evolutionary implications. PaleoBios 21:4142.Google Scholar
Cohen, J. E. 2003. Ecological community description using the food web, species abundance, and body size. Proceedings of the National Academy of Sciences USA 100:1781.CrossRefGoogle ScholarPubMed
Damuth, J. 1981. Population-density and body size in mammals. Nature 290:699700.Google Scholar
Damuth, J. 1987a. Interspecific allometry of population-density in mammals and other animals: the independence of body-mass and population energy-use. Biological Journal of the Linnean Society 31:193246.Google Scholar
Damuth, J. 1987b. Interspecific allometry of population density in mammals and other animals. Biological Journal of the Linnean Society 31:193246.Google Scholar
Dietl, G. P., and Vermeij, G. J. 2006. Comment on “Statistical Independence of Escalatory Ecological Trends in Phanerozoic Marine Invertebrates.” Science 314:925e-.CrossRefGoogle Scholar
Dodds, P. S., Rothman, D. H., and Weitz, J. S. 2001. Re-examination of the “3/4-law” of metabolism. Journal of Theoretical Biology 209:927.Google Scholar
Droser, M. L., and Bottjer, D. J. 1989. Ordovician increase in extent and depth of bioturbation—implications for understanding early Paleozoic ecospace utilization. Geology 17:850852.Google Scholar
Finnegan, S., and Droser, M. L. 2005. Relative and absolute abundance of trilobites and rhynchonelliform brachiopods across the Lower/Middle Ordovician boundary, eastern Basin and Range. Paleobiology 31:480502.Google Scholar
Foote, M. 1991. Morphological patterns of diversification: examples from trilobites. Palaeontology 34:461485.Google Scholar
Fortey, R. A., and Owens, R. M. 1999. Feeding habits in trilobites. Palaeontology 42:429465.Google Scholar
Gilinsky, N. L., and Bennington, J. B. 1994. Estimating numbers of whole individuals from collections of body parts: a taphonomic limitation of the paleontological record. Paleobiology 20:245258.CrossRefGoogle Scholar
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., and Charnov, E. L. 2001. Effects of size and temperature on metabolic rate. Science 293:22482251.Google Scholar
Gould, S. J., and Calloway, C. B. 1980. Clams and brachiopods: ships that pass in the night. Paleobiology 6:383396.Google Scholar
Harper, D. A. T., Cocks, L. R. M., Popov, L., Sheehan, P. M., Basset, M. G., Copper, P., Holmer, L. E., Jin, J., and Rong, J. 2004a. Brachiopods. Pp. 157178 in Webby, et al. 2004.Google Scholar
Harper, D. A. T., Cocks, L. R. M., Popov, L. M., Sheehan, P. M., Basset, M. G., Copper, P., Holmer, L., Jisuo, J., and Rong, J. 2004b. Brachiopods. Pp. 157178 in Webby, et al. 2004.Google Scholar
Herrmann, A. D., Haupt, B. J., Patzkowsky, M. E., Seidov, D., and Slingerland, R. L. 2004. Response of Late Ordovician paleoceanography to changes in sea level, continental drift, and atmospheric pCO2: potential causes for long-term cooling and glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 210:385401.Google Scholar
Holland, S. M., and Patzkowsky, M. E. 1996. Sequence stratigraphy and long-term paleoceanographic change in the Middle and Upper Ordovician of the Eastern United States. Geological Society of America Special Paper 306:117129.Google Scholar
Holland, S. M. 2004. Ecosystem structure and stability; middle Upper Ordovician of central Kentucky, USA. Palaios 19:316331.2.0.CO;2>CrossRefGoogle Scholar
Hunda, B. R., Chatterton, B. D. E., and Ludvigsen, R. 2003. Silicified Late Ordovician trilobites from the Mackenzie Mountains, Northwest Territories, Canada. Palaeontographica Canadiana 21:87.Google Scholar
Jablonski, D. 1996. Body size and macroevolution in Jablonski, et al. 1996.Google Scholar
Jablonski, D., Erwin, D. H., and Lipps, J. H., eds. 1996. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Kerr, S. R., and Dickie, L. M. 2001. The biomass spectrum: a predator-prey theory of aquatic production. Columbia University Press, New York.Google Scholar
Kidwell, S. M. 2001. Preservation of species abundance in marine death assemblages. Science 294:10911094.Google Scholar
Kidwell, S. M. 2002. Time-averaged molluscan death assemblages: palimpsests of richness, snapshots of abundance. Geology 30:803806.Google Scholar
Lupia, R., Lidgard, S., and Crane, P. R. 1999. Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology 25:305340.CrossRefGoogle Scholar
Miller, A. I. 1998. Biotic transitions in global marine diversity. Science 281:11571160.CrossRefGoogle ScholarPubMed
Miller, A. I., and Connolly, S. R. 2001. Substrate affinities of higher taxa and the Ordovician Radiation. Paleobiology 27:768778.Google Scholar
Miller, A. I., and Foote, M. 1996. Calibrating the Ordovician Radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology 22:304309.Google Scholar
Miller, A. I., and Sepkoski, J. J. 1988. Modeling bivalve diversification: the effect of interaction on a macroevolutionary system. Paleobiology 14:364369.CrossRefGoogle ScholarPubMed
Miller, A. I., Holland, S. M., Droser, M. L., and Patzkowsky, M. E. 1998. Dynamics of the Ordovician Radiation: a comment on Westrop and Adrain. Paleobiology 24:524528.Google Scholar
Novack-Gottshall, P. M. 2007. Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology 33:274295.Google Scholar
Novack-Gottshall, P. M. 2008a. Ecosystem-wide body size trends in Cambrian-Devonian marine invertebrate lineages. Paleobiology 34:210228.Google Scholar
Novack-Gottshall, P. M. 2008b. Using simple body size metrics to estimate fossil body volume: empirical validation using diverse Paleozoic invertebrates. Palaios 23:163173.Google Scholar
Novack-Gottshall, P. M., and Miller, A. I. 2003. Comparative taxonomic richness and abundance of Late Ordovician gastropods and bivalves in mollusc-rich strata of the Cincinnati Arch. Palaios 18:559571.Google Scholar
Patzkowsky, M. E., and Holland, S. M. 1999. Biofacies replacement in a sequence stratigraphic framework: Middle and Upper Ordovician of the Nashville Dome, Tennessee, USA. Palaios 14:301323.Google Scholar
Patzkowsky, M. E., Slupik, L. M., Arthur, M. A., Pancost, R. D., and Freeman, K. H. 1997. Late Middle Ordovician environmental change and extinction: harbinger of the end-Ordovician or continuation of Cambrian patterns? Geology 25:911914.2.3.CO;2>CrossRefGoogle Scholar
Payne, J. L., and Finnegan, S. 2006. Controls on marine animal biomass through geological time. Geobiology 4:110.Google Scholar
Peters, S. E. 2004. Relative abundance of Sepkoski's evolutionary faunas in Cambrian-Ordovician deep subtidal environments in North America. Paleobiology 30:543560.2.0.CO;2>CrossRefGoogle Scholar
Peters, S. E. 2006. Genus richness in Cambrian-Ordovician benthic marine communities in North America. Palaios 21:580587.Google Scholar
Pope, M., and Read, J. F. 1995. Sequences and meter-scale cyclicity of Middle to Late Ordovician cool water carbonates and clastics of Kentucky. Pacific Section SEPM Field Trip Guidebook 77:333336.Google Scholar
Pope, M. C., and Steffen, J. B. 2003. Widespread, prolonged late Middle to Late Ordovician upwelling in North America: a proxy record of glaciation? Geology 31:656656.Google Scholar
Ross, C. A., and Ross, J. R. P. 1995. North American depositional sequences and correlations. Pp. 309313 in Cooper, J. D., Droser, M. L., and Finney, S. C., eds. Ordovician odyssey. Short papers for the Seventh International Symposium on the Ordovician System. Pacific Section SEPM, Fullerton, Calif. Google Scholar
Ross, R. J., and Shaw, F. C. 1972. Distribution of the Middle Ordovician Copenhagen Formation and its trilobites in Nevada. U.S. Geological Survey Professional Paper 749.Google Scholar
Ross, R. J. Jr., Nolan, T. B., and Harris, A. G. 1980. The Upper Ordovician and Silurian Hanson Creek Formation of central Nevada. U.S. Geological Survey Professional Paper 1126-C.Google Scholar
Ross, R. J. Jr., James, N. P., Hintze, L. F., and Poole, F. G. 1989. Architecture and evolution of a Whiterockian (early Middle Ordovician) carbonate platform, Basin Ranges of western U.S.A. In Crevallo, P. D., Wilson, J.L., Sarg, J. F., and Read, J. F., eds. Controls on carbonate platform and basin development. SEPM Special Publication 44:167185.Google Scholar
Ross, R. J. Jr., Hintze, L. F., Ethington, R. L., Miller, J. F., Taylor, M. E., and Repetski, J. E. 1997. The Ibexian Series (Lower Ordovician), a replacement for “Canadian Series” in North American chronostratigraphy. U.S. Geological Survey Open-File Report 93–598.Google Scholar
Rudkin, D. M., Young, G. A., Elias, R. J., and Dobrzanski, E. P. 2003. The world's biggest trilobite; Isotelus rex new species from the Upper Ordovician of northern Manitoba, Canada. Journal of Paleontology 77:99112.Google Scholar
Saltzman, M. R., and Young, S. A. 2005. Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology 33:109112.CrossRefGoogle Scholar
Savage, V. M. 2004. Effects of body size and temperature on population growth. American Naturalist 163:429441.Google Scholar
Sepkoski, J. J. Jr. 1996. Competition in macroevolution; the double wedge revisited. Pp. 211255 in Jablonski, et al. 1996.Google Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363:560.Google Scholar
Sepkoski, J. J. Jr., and Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic benthic communities in space and time. Pp. 153190 in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J. Google Scholar
Sepkoski, J. J. Jr. 1998. Analysing diversification through time. Trends in Ecology and Evolution 13:158159.Google Scholar
Sepkoski, J. J. Jr., and Sheehan, P. M. 1983. Diversification, faunal change, and community replacement during the Ordovician radiations. Pp. 673718 in Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in recent and fossil benthic communities. Plenum, New York.CrossRefGoogle Scholar
Sepkoski, J. J. Jr., McKinney, F. K., and Lidgard, S. 2000. Competitive displacement among post-Paleozoic cyclostome and cheilostome bryozoans. Paleobiology 26:718.Google Scholar
Shields, G. A., Carden, G. A. F., Veizer, J., Meidla, T., Rong, J. Y., and Li, R. Y. 2003. Sr, C, and O isotope geochemistry of Ordovician brachiopods: a major isotopic event around the Middle-Late Ordovician transition. Geochimica Et Cosmochimica Acta 67:20052025.Google Scholar
Springer, D. A. 1982. Community gradients in the Martinsburg Formation (Ordovician), southwestern Virginia. . Virginia Polytechnic Institute and State University, Blacksburg.Google Scholar
Stanley, S. M. 1973. Explanation for Cope's Rule. Evolution 27:126.Google Scholar
Stempien, J. A., Krause, R. A. Jr., Kowalewski, M., Miller, A. I., and Anonymous, . 2005. Brachiopod and bivalve size during the Ordovician; interpreting general trends. Geological Society of America Abstracts with Programs 37:14.Google Scholar
Titus, R. 1986. Fossil communities of the upper Trenton group (Ordovician) of New York State. Journal of Paleontology 60:805824.Google Scholar
Titus, R., and Cameron, B. 1976. Fossil communities of the lower Trenton Group (Middle Ordovician) of central and northwestern New York State. Journal of Paleontology 50: 12009–1225.Google Scholar
Valentine, J. W. 1973. Evolutionary paleoecology of the marine biosphere. Prentice-Hall, Englewood Cliffs, N.J. Google Scholar
Vermeij, G. J. 2004. Nature: an economic history. Princeton University Press, Princeton, N.J. Google Scholar
Webby, B. D., Paris, F., Droser, M. L., and Percival, I. G., eds. 2004. The Great Ordovician Biodiversification Event. Columbia University Press, New York.Google Scholar
Westrop, S. R., and Adrain, J. M. 1998a. Trilobite alpha diversity and the reorganization of Ordovician benthic marine communities. Paleobiology 24:116.Google Scholar
Westrop, S. R. 1998b. Trilobite diversity and the Ordovician Radiation: a reply to Miller et al. Paleobiology 24:529533.Google Scholar
Westrop, S. R., Knox, L. A., and Landing, E. 1993. Lower Ordovician (Ibexian) trilobites from the Tribes Hill Formation, central Mohawk Valley, New York State. Canadian Journal of Earth Sciences 30:16181633.Google Scholar
Westrop, S. R., Tremblay, J. V., and Landing, E. 1995. Declining importance of trilobites in Ordovician nearshore paleocommunities: dilution or displacement? Palaios 10:7579.CrossRefGoogle Scholar
Wing, S. L., Hickey, L. J., and Swisher, C. C. 1993. Implications of an exceptional fossil flora for Late Cretaceous vegetation. Science 363:342344.Google Scholar
Supplementary material: File

Finnegan and Droser supplementary material

Supplementary Table S1

Download Finnegan and Droser supplementary material(File)
File 75.3 KB
Supplementary material: Image

Finnegan and Droser supplementary material

Supplementary Figure S1

Download Finnegan and Droser supplementary material(Image)
Image 753.8 KB