Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T18:39:36.809Z Has data issue: false hasContentIssue false

Bivalve taphonomy in tropical mixed siliciclastic-carbonate settings. I. Environmental variation in shell condition

Published online by Cambridge University Press:  08 February 2016

Mairi M. R. Best
Affiliation:
Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois 60637. E-mail: [email protected] and [email protected]
Susan M. Kidwell
Affiliation:
Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois 60637. E-mail: [email protected] and [email protected]

Abstract

Contrary to the geological stereotype of pure-carbonate reef platforms, approximately 50% of shallow shelf area in the Tropics is accumulating siliciclastic and mixed siliciclastic-carbonate sediments. Taphonomic characterization of these settings is thus essential for assessing variation among major facies types within the Tropics, as well as for eventual comparison with higher-latitude settings. Our grab samples and dredge samples of bivalve death assemblages from nine stations in five subtidal habitats in a large marine embayment of Caribbean Panama (Bocas del Toro) provide the first actualistic information on the taphonomic condition of shells in Recent tropical siliciclastic sediments. Focusing on unambiguous damage to bivalve shell interiors, we found that the quality of shell preservation in fine-grained siliciclastics is superb: commonly «10% of specimens are affected by encrustation, boring, edge-rounding fine-scale surface alteration via dissolution, microbioerosion maceration. Pure-carbonate and mixed siliciclastic-carbonate environments containing hard substrata (patch reefs, Halimeda gravelly sand, mud among patch reefs) contain higher numbers of more severely damaged shells (generally >25%) and also higher diversities of fossilizable encrusters and borers. Disarticulation and fragmentation are pervasive across all environments and are probably related to predation rather than to postmortem processes. As in other shallow subtidal study areas, the taxonomic compositions of death assemblages have not been homogenized by postmortem transport but show high spatial fidelity to the distribution of living species. Assemblages from the five sedimentary environments have distinct taphonomic signatures, but the strongest differences are between the two fine-grained, exclusively soft-sediment siliciclastic environments on the one hand and the three environments containing hard substrata on the other. Experimental tests for rates and agents of damage, still in progress, indicate that the most critical environmental variables are exhumation cycles and burial rate. Bivalve death assemblages from Bocas del Toro demonstrate that damage levels in tropical fine-grained siliciclastic environments are much lower than in closely associated reefs and algal sands suggest a less filtered record of biological information.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aller, R. C. 1982. Carbonate dissolution in nearshore terriginous muds: the role of physical and biological reworking. Journal of Geology 90:98154.Google Scholar
Aller, R. C., Blair, N. E., Xia, Q., and Rude, P. D. 1996. Remineralization rates, recycling, and storage of carbon in Amazon shelf sediments. Continental Shelf Research 6:753786.Google Scholar
Allison, P. A. 1990. Variation in rates of decay and disarticulation of Echinodermata: implications for the application of actualistic data. Palaios 5:432440.Google Scholar
Anderson, L. C., McBride, R. A., Taylor, M. J., and Byrnes, M. R. 1998. Late Holocene record of community replacement preserved in time-averaged molluscan assemblages, Louisiana chenier plain. Palaios 13:488499.Google Scholar
Best, M. M. R. 1996a. Preservation of calcium carbonate skeletons in tropical shelf environments of the San Blas Archipelago, Caribbean Panama. Eighth international coral reef symposium (Panama), Abstracts of papers, p. 18.Google Scholar
Best, M. M. R. 1996b. Actualistic bivalve taphonomy in carbonate and siliciclastic tropical marine shelf environments of the San Blas Archipelago, Caribbean Panama. Geological Society of America Abstracts with Programs 28:364.Google Scholar
Best, M. M. R. 1998a. Distribution and nature of siliciclastic and carbonate sediments on the tropical American shelves: significance for carbonate burial. Geological Association of Canada Annual Meeting Abstracts 23:17.Google Scholar
Best, M. M. R. 1998b. Taxonomic and taphonomic rarefaction: a metric for assessing sampling and divergence of taphonomic signature. Canadian Paleontology Conference Program and Abstracts 8:8.Google Scholar
Best, M. M. R. 1998c. Experimental and death assemblage bivalve taphonomy in tropical carbonate and siliciclastic environments, San Blas Archipelago, Caribbean Panama. Geological Society of America Abstracts with Programs 30:383.Google Scholar
Best, M. M. R., and Kidwell, S. M. 1995. Actualistic bivalve taphonomy in tropical marine siliciclastics: preliminary results from natural death assemblages and experimental arrays in Caribbean Panama. Geological Society of America Abstracts with Programs 27:134.Google Scholar
Best, M. M. R., and Kidwell, S. M. 1996. Bivalve shell taphonomy in tropical siliciclastic marine environments: preliminary experimental results. Sixth North American paleontology convention, Abstracts of papers. Paleontological Society Special Publication 8:34.Google Scholar
Best, M. M. R., and Kidwell, S. M. 1999. Bivalve taphonomy in tropical mixed siliciclastic-carbonate settings. II. Effect of bivalve life habits and shell types. Paleobiology 26:103115.Google Scholar
Best, M. M. R., and Pandolfi, J. M. 1992. Molluscan taphonomy in Madang Lagoon, Papua New Guinea. Proceedings of the Seventh International Coral Reef Symposium, Guam 1:437.Google Scholar
Best, M. M. R., Kidwell, S. M., Ku, T. C. W., and Walter, L. M. 1999. Bivalve taphonomy and porewater geochemistry in tropical carbonate and siliciclastic marine environments: implications for the preservation of carbonate. Geological Association of Canada Annual Meeting Abstracts, Vol. 24.Google Scholar
Boekschoten, G. T. 1966. Shell borings of sessile epibiontic organisms as paleoecological guides (with examples from the Dutch coast). Palaeogeography, Palaeoclimatology, Palaeoecology 2:333379.Google Scholar
Bosence, D. W. J. 1979. Live and dead faunas from coralline algal gravels, County Galway. Palaeontology 22:449478.Google Scholar
Cadée, G. H. 1968. Molluscan biocoenoses and thanatocoenoses in the Ria de Arosa, Galicia, Spain. Zoologische Verhandelingen (Rijksmuseum Natuurlijke Historie Leiden) 95.Google Scholar
Cadée, G. H. 1984. Macrobenthos and macrobenthic remains on the Oyster Ground, North Sea. Netherlands Journal Sea Rsearch 18:160178.Google Scholar
Cadée, G. H. 1994. Eider, shelduck, and other predators, the main producers of shell fragments in the Wadden Sea—paleoecological implications. Palaeontology 37:181202.Google Scholar
Cate, A. S., and Evans, I. 1994. Taphonomic significance of the biomechanical fragmentation of live molluscan shell material by a bottom-feeding fish (Pogonias cromis) in Texas coastal bays. Palaios 9:254274.Google Scholar
Chave, K. E. 1964. Skeletal durability and preservation. Pp. 377387in Imbrie, J. and Newell, N. D., eds. Approaches to paleoecology. Wiley, New York.Google Scholar
Coates, A. G., Jackson, J. B. C., Collins, L. S., Cronin, T. M., Dowsett, H. J., Bybell, L. M., Jung, P., and Obando, J. A. 1992. Closure of the Isthmus of Panama: the near-shore marine record of Costa Rica and western Panama. Geological Society of America Bulletin 104:814828.Google Scholar
Crenshaw, M. A. 1980. Mechanisms of shell formation and dissolution. Pp. 115132in Rhoads, D. A. and Lutz, R. A.Skeletal growth of aquatic organisms: biological records of environmental change. Plenum, New York.CrossRefGoogle Scholar
Cutler, A. H. 1987. Surface textures of shells as taphonomic indicators. In Flessa, K. W., ed. Paleoecology and taphonomy of recent to Pleistocene intertidal deposits, Gulf of California. Paleontological Society Special Publication 2:164176.Google Scholar
Cutler, A. H. 1995. Taphonomic implications of shell surface textures in Bahía la Choya, northerm Gulf of California. Palaeogeography, Palaeoclimatology, Palaeoecology 114:219240.Google Scholar
Cutler, A. H., and Flessa, K. W. 1995. Bioerosion, dissolution and precipitation as taphonomic agents at high and low latitudes. Senckenbergiana maritima 25:115121.Google Scholar
Davies, D. J., Powell, E. N., and Stanton, R. J. 1989. Taphonomic signature as a function of environmental process: shells and shell beds in a hurricane-influenced inlet on the Texas coast. Palaeogeography, Palaeoclimatology, Palaeoecology 72:317356.Google Scholar
Dent, S. R. 1995. A taphofacies model of the recent South Florida continental shelf: a new perspective for a classic, exposed carbonate environment. . University of Cincinnati, Cincinnati, Ohio.Google Scholar
Dent, S. R. 1996. Recent molluscan taphofacies of south Florida: a comparison of basic analytical methods. Geological Society of America Abstracts with Programs 28:A364.Google Scholar
Ekdale, A. A. 1972. Ecology and paleoecology of marine invertebrate communities in calcareous substrates, northeast Quintana Roo, Mexico. . Rice University, Houston.Google Scholar
Ekdale, A. A. 1977. Quantitative paleoecological aspects of modern marine mollusk distribution, northeast Yucatán coast, Mexico. American Association of Petroleum Geologists Studies in Geology 4:195207.Google Scholar
Feige, A., and Fürsich, F. T. 1991. Taphonomy of the Recent molluscs of Bahía la Choya (Gulf of California, Sonora, Mexico). Zitteliana 18:89113.Google Scholar
Flessa, K. W. 1998. Well-traveled cockles: shell transport during the Holocene transgression of the southern North Sea. Geology 26:187190.Google Scholar
Frey, R. W., and Howard, J. D. 1986. Taphonomic characteristics of offshore mollusk shells, Sapelo Island, Georgia. Tulane Studies in Geology and Paleontology 19:5161.Google Scholar
Fürsich, F. T., and Flessa, K. W. 1987. Taphonomy of tidal flat molluscs in the northern Gulf of California: paleoenvironmental analysis despite the perils of preservation. Palaios 2:543559.Google Scholar
Glover, C. P., and Kidwell, S. M. 1993. Influence of organic matrix on the post-mortem destruction of molluscan shells. Journal of Geology 101:729747.Google Scholar
Greb, L., Saric, B., Seyfried, H., Broszonn, T., Brauch, S., Gugau, G., Wiltschko, C., and Leinfelder, R. 1996. Okologie und sedimentologie eines rezenten rampensystems an der Karibikküste von Panamá. Institut für Geologie und Paläontologie, Universität Stuttgart. Profil 10.Google Scholar
Green, M. A., Aller, R. C., and Aller, J. Y. 1996. Benthic biogeochemical changes associated with calcite undersaturation in Long Island Sound sediments. In Geology of Long Island and metropolitan New York. Department of Earth and Space Sciences, SUNY Stony Brook, Stony Brook, N.Y.Google Scholar
Greenstein, B. J., and Moffat, H. A. 1996. Comparative taphonomy of modern and Pleistocene corals, San Salvador, Bahamas. Palaios 11:5763.Google Scholar
Greenstein, B. J., and Pandolfi, J. M. 1997. Preservation of community structure in modern reef coral life and death assemblages of the Florida Keys: implications for the Quaternary fossil record of coral reefs. Bulletin of Marine Science 61:431452.Google Scholar
Guzmán, H. M., and Guevara, C. A. 1998a. Arrecifes coralinos de Bocas del Toro, Panamá. I. Distribución, estructura y estado de conservación de los arrecifes continentales de la Laguna de Chiriquí y la Bahía Almirante. Revista de Biología Tropical 46:601623.Google Scholar
Guzmán, H. M., and Guevara, C. A. 1998b. Arrecifes coralinos de Bocas del Toro, Panamá. II. Distribución, estructura y estado de conservación de los arrecifes de las Islas Bastimentos, Solarte, Carenero y Colón. Revista de Biología Tropical 46:893916.Google Scholar
Havach, S. M., and Collins, L. S. 1997. The distribution of recent benthic foraminifera across habitats of Bocas del Toro, Caribbean Panama. Journal of Foraminiferal Research 27:232249.Google Scholar
Heck, K. L. Jr., Van Belle, G., and Simberloff, D. 1975. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56:14591461.Google Scholar
Henderson, S. W., and Frey, R. W. 1986. Taphonomic redistribution of mollusk shells in a tidal inlet channel, Sapelo Island, Georgia. Palaios 1:316.Google Scholar
Jackson, J. B. C. 1977. Habitat area, colonization, and development of epibenthic community structure. Pp. 349358in Keegan, B. F., Ceidigh, P. O., and Boaden, P. J. S., eds. Biology of benthic organisms. Pergamon, Oxford.Google Scholar
Jackson, J. B. C., Budd, A. F., and Coates, A. G., eds. 1997. Evolution and environment in tropical America. University of Chicago Press, Chicago.Google Scholar
Johnson, R. G. 1965. Pelecypod death assemblages in Tomales Bay, California. Journal of Paleontology 39:8085.Google Scholar
Kidwell, S. M., and Bosence, D. W. J. 1991. Taphonomy and time-averaging of marine shelly faunas. In Allison, P. A. and Briggs, D. E. G., eds. Taphonomy: releasing the data locked in the fossil record. Topics in Geobiology 9:115209. Plenum, New York.Google Scholar
Kiene, W. 1997. Enriched nutrients and their impact on bioerosion: Results for ENCORE. Proceedings of the Eighth International Coral Reef Symposium, Panama 1:897902.Google Scholar
Kowalewski, M., Flessa, K. W., and Aggen, J. A. 1994. Taphofacies anaysis of Recent shelly cheniers (beach ridges), northeastern Baja California, Mexico. Facies 41:209242.Google Scholar
Kowalewski, M., Flessa, K. W., and Hallman, D. P. 1995. Ternary taphograms: triangular diagrams applied to taphonomic analysis. Palaios 10:478483.Google Scholar
Ku, T. C. W., and Walter, L. M. 1998. Pore water geochemistry of shallow marine carbonates vs. tropical siliciclastics: carbon, sulfur and iron systematics and implications for carbonate preservation. Geological Society of America Abstracts with Programs 30:374.Google Scholar
Llewellyn, G., and Messing, C. G. 1993. Compositional and taphonomic variations in modern crinoid-rich sediments from the deep-water margin of a carbonate bank. Palaios 8:554573.Google Scholar
Meldahl, K. H., and Flessa, K. W. 1990. Taphonomic pathways and comparative biofacies and taphofacies in a Recent intertidal/shallow shelf environment. Lethaia 23:4360.Google Scholar
Meldahl, K. H., Flessa, K. W., and Cutler, A. H. 1997a. Time-averaging and postmortem skeletal survival in benthic fossil assemblages: quantitative comparisons among Holocene environments. Paleobiology 23:207229.Google Scholar
Meldahl, K. H., Yajimovich, O. G., Empedocles, C. D., Gustafson, C. S., Hidalgo, M. M., and Reardon, T. W. 1997. Holocene sediments and molluscan faunas of Bahía Concepción: a modern analog to Neogene rift basins of the Gulf of California. Geological Society of America Special Paper 318:3956.Google Scholar
Miller, A. I. 1988. Spatial resolution in subfossil molluscan remains: implications for paleobiological analyses. Paleobiology 14:91103.Google Scholar
Miller, A. I., Llewellyn, G., Parsons, K. M., Cummins, H., Boardman, M. R., Greenstein, B. J., and Jacobs, D. K. 1992. Effect of Hurricane Hugo on molluscan skeletal distributions, Salt River Bay, St. Croix, U.S. Virgin Islands. Geology 20:2326.Google Scholar
Nebelsick, J. H. 1992. Echinoid distribution by fragment identification in the northern Bay of Safaga, Red Sea, Egypt. Palaios 7:316328.Google Scholar
Nebelsick, J. H. 1995. Comparative taphonomy of Clypeasteroids. Eclogae Geologica Helvetica 88:685693.Google Scholar
Nebelsick, J. H., Schmid, B., and Stachowitsch, M. 1997. The encrustation of fossil and recent sea-urchin tests: ecological and taphonomic significance. Lethaia 30:271284.Google Scholar
Pandolfi, J. M. and Greenstein, B. J. 1997a. Taphonomic alteration of reef corals: effects of reef environment and coral growth form. I. The Great Barrier Reef. Palaios 12:2742.Google Scholar
Pandolfi, J. M. and Greenstein, B. J. 1997b. Preservation of community structure in death assemblages of deep-water Caribbean reef corals. Limnology and Oceanography 42:15051516.Google Scholar
Pandolfi, J. M., and Minchin, P. R. 1995. A comparison of taxonomic composition and diversity between reef coral life and death assemblages in Madang Lagoon, Papua New Guinea. Paleogeography, Paleoclimatology, Paleoecology 119:321341.Google Scholar
Parsons, K. M. 1989. Taphonomy as an indicator of environment: Smuggler's Cove, St. Croix, U.S.V.I. In Hubbard, D. K., ed. Terrestrial and marine ecology of St. Croix, U.S. Virgin Islands. West Indies Laboratory Special Publication 8:135143.Google Scholar
Parsons, K. M. 1993. Taphonomic attributes of mollusks as predictors of environment of deposition in modern carbonate systems: northeastern Caribbean. Ph.D. disseration. University of Rochester, Rochester, N.Y.Google Scholar
Parsons, K. M., and Brett, C. E. 1991. Taphonomic processes and biases in modern marine environments: an actualistic perspective on fossil assemblage preservation. Pp. 2265in Donovan, S. K., ed. The processes of fossilization. Columbia University Press, New York.Google Scholar
Perry, C. T. 1996. The rapid response of reef sediments to changes in community composition: implications for time averaging and sediment accumulation. Journal of Sedimentary Research 66:459467.Google Scholar
Perry, C. T. 1998. Grain susceptibility to the effects of microboring: implications for the preservation of skeletal carbonates. Sedimentology 45:3951.Google Scholar
Pilkey, O. H., and Curran, H. A. 1986. Molluscan shell transport—you ain't seen nothin' yet. Palaios 1:197.Google Scholar
Sadler, J. C., Lander, M. A., Hori, A. M., and Oda, L. K. 1987. Tropical marine climatic atlas, Vol. 1. Indian Ocean and Atlantic Ocean. University of Hawaii, Honolulu.Google Scholar
Sanders, H. L. 1968. Marine benthic diversity: a comparative study. American Naturalist 102:243282.Google Scholar
Schäfer, W. 1972. Ecology and palaeoecology of marine environments. University of Chicago Press, Chicago.Google Scholar
Seyfried, H., and Hellmann, W., eds. 1994. Geology of an evolving island arc: the isthmus of southern Nicaragua, Costa Rica, and western Panamá. Institut für Geologie und Paläontologie, Universität Stuttgart. Profil 7.Google Scholar
Simon, A., and Poulicek, M. 1990, Biodégradation anaérobique des structures squelettiques en milieu marin. I. Approche morphologique. Cahiers de Biologie Marine 31:95105.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1995. Biometry, 3d ed.W. H. Freeman, New York.Google Scholar
Staff, G. M., and Powell, E. N. 1990a. Taphonomic signature and the imprint of taphonomic history: discriminating between taphofacies of the inner continental shelf and a microtidal inlet. Paleontological Society Special Publication 5:370390.Google Scholar
Staff, G. M., and Powell, E. N. 1990b. Local variability of taphonomic attributes in a parautochthonous assemblage: can taphonomic signature distinguish a heterogeneous environment? Journal of Paleontology 64:648658.Google Scholar
Tudhope, A. W. 1989. Shallowing-upwards sedimentation in a coral reef lagoon, Great Barrier Reef of Australia. Journal of Sedimentary Petrology 59:10361051.Google Scholar
Tudhope, A. W., and Scoffin, T. P. 1984. The effects of Callianassa bioturbation on the preservation of carbonate grains in Davies Reef lagoon, Great Barrier Reef, Australia. Journal of Sedimentary Petrology 54:10911096.Google Scholar
Verardo, D., Froelich, P., and McIntyre, A. 1990. Determination of organic carbon and nitrogen in marine sediments using the Carlo-Erba NA-1500 Analyzer. Deep-sea Research 37:157165.Google Scholar
Walter, L. M., and Burton, E. A. 1990. Dissolution of recent platform carbonate sediments in marine pore fluids. American Journal of Science 290:601643.Google Scholar
Warme, J. E. 1971. Paleoecological aspects of a modern coastal lagoon. University of California Publications in Geological Sciences 87:1110.Google Scholar
Warme, J. E., Ekdale, A. A., Ekdale, S. F., and Peterson, C. H. 1976. Raw material of the fossil record. Pp. 143–69 in Scott, R. W. and West, R. R., eds. Structure and classification of paleocommunities. Dowden, Hutchinson, and Ross, Stroudsburg, Penn.Google Scholar
Zuschin, M., and Hohenegger, J. 1998. Subtropical coral-reef associated sedimentary facies characterized by molluscs (northern Bay of Safaga, Red Sea, Egypt). Facies 38:229254.Google Scholar