Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T11:15:33.663Z Has data issue: false hasContentIssue false

Bivalve body-size distribution through the Late Triassic mass extinction event

Published online by Cambridge University Press:  26 January 2022

L. Felipe Opazo*
Affiliation:
Florida Museum of Natural History, Invertebrate Paleontology, Dickinson Hall, Room 252, 1659 Museum Road, Gainesville, Florida 32611; U.S.A.; Department of Ecology, Pontificia Universidad Catolica de Chile, Santiago, Chile. E-mail: [email protected]
Richard J. Twitchett
Affiliation:
Department of Earth Sciences, Natural History Museum, London SW7 5BD, United Kingdom. E-mail: [email protected]
*
*Corresponding author.

Abstract

The synergic relationship between physiology, ecology, and evolutionary process makes the body-size distribution (BSD) an essential component of the community ecology. Body size is highly susceptible to environmental change, and extreme upheavals, such as during a mass extinction event, could exert drastic changes on a taxon's BSD. It has been hypothesized that the Late Triassic mass extinction event (LTE) was triggered by intense global warming, linked to massive volcanic activity associated with the Central Atlantic Magmatic Province. We test the effects of the LTE on the BSD of fossil bivalve assemblages from three study sites spanning the Triassic/Jurassic boundary in the United Kingdom. Our results show that the effects of the LTE were rapid and synchronous across sites, and the BSDs of the bivalves record drastic changes associated with species turnover. No phylogenetic signal of size selectivity was recorded, although semi-infaunal species were apparently most susceptible to change. Each size class had the same likelihood of extinction during the LTE, which resulted in a platykurtic BSD with negative skew. The immediate postextinction assemblage exhibits a leptokurtic BSD, although with negative skew, wherein surviving species and newly appearing small-sized colonizers exhibit body sizes near the modal size. Recovery was relatively rapid (~100 kyr), and larger bivalves began to appear during the pre-Planorbis Zone, despite recurrent dysoxic/anoxic conditions. This study demonstrates how a mass extinction acts across the size spectrum in bivalves and shows how BSDs emerge from evolutionary and ecological processes.

Type
Articles
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Institute of Ecology and Biodiversity, Las Palmeras 3425, Ñuñoa, Santiago, Chile.

References

Literature Cited

Aberhan, M., and Baumiller, T. K.. 2003. Selective extinction among Early Jurassic bivalves: a consequence of anoxia. Geology 31:10771080.CrossRefGoogle Scholar
Allen, C. R., Garmestani, A. S., Havlicek, T. D., Marquet, P. A., Peterson, G. D., Restrepo, C., Stow, C. A., and Weeks, B. E.. 2006. Patterns in body mass distributions: sifting among alternative hypotheses. Ecology Letters 9:630643.CrossRefGoogle ScholarPubMed
Anderson-Teixeira, K. J., Savage, V. M., Allen, A. P., and Gillooly, J. F.. 2009. Allometry and metabolic scaling in ecology. In Encyclopedia of life sciences (ELS). Wiley, Chichester, U.K.Google Scholar
Atkinson, D. 1994. Temperature and organism size—a biological law for ectotherms? Pp. 158 in Begon, M., and Fitter, A. H., eds. Advances in ecological research 25. Academic Press, London.Google Scholar
Atkinson, J. W., and Wignall, P. B.. 2019. How quick was marine recovery after the end-Triassic mass extinction and what role did anoxia play? Palaeogeography, Palaeoclimatology, Palaeoecology 528:99119.CrossRefGoogle Scholar
Atkinson, J. W., and Wignall, P. B.. 2020. Body size trends and recovery amongst bivalves following the end-Triassic mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 538:18.CrossRefGoogle Scholar
Atkinson, J. W., Wignall, P. B., Morton, J. D., and Aze, T.. 2019. Body size changes in bivalves of the family Limidae in the aftermath of the end-Triassic mass extinction: the Brobdingnag effect. Palaeontology 62:561582.CrossRefGoogle Scholar
Baltanas, A., and Danielopol, D. L.. 2013. Body-size distribution and biogeographical patterns in non–marine ostracods (Crustacea: Ostracoda). Biological Journal of the Linnean Society 109:409423.CrossRefGoogle Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.CrossRefGoogle Scholar
Barras, C., and Twitchett, R. J.. 2016. The Late Triassic mass extinction event. Pp. 117 in Mangano, M. G. and Buatois, L. A., eds. Trace-fossil record of major evolutionary events. Vol. 2, Mesozoic and Cenozoic. Springer, Dordrecht, Netherlands.Google Scholar
Barras, C. G., and Twitchett, R. J.. 2007. Response of the marine infauna to Triassic–Jurassic environmental change: ichnological data from southern England. Palaeogeography, Palaeoclimatology, Palaeoecology 244:223241.CrossRefGoogle Scholar
Behrensmeyer, A. K., Kidwell, S. M., and Gastaldo, R. A.. 2000. Taphonomy and paleobiology. Paleobiology 26:103147.CrossRefGoogle Scholar
Berner, R. A., and Beerling, D. J.. 2007. Volcanic degassing necessary to produce a CaCO3 undersaturated ocean at the Triassic–Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 244:368373.CrossRefGoogle Scholar
Blackburn, T. J., Olsen, P. E., Bowring, S. A., McLean, N. M., Kent, D. V., Puffer, J., McHone, G., Rasbury, E. T., and Et-Touhami, M.. 2013. Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province. Science 340:941945.CrossRefGoogle ScholarPubMed
Bonis, N. R., Ruhl, M., and Kurschner, W. M.. 2010. Milankovitch-scale palynological turnover across the Triassic–Jurassic transition at St. Audrie's Bay, SW UK. Journal of the Geological Society, London 167:877888.CrossRefGoogle Scholar
Boomer, I. D., Duffin, C. J., and Swift, A.. 1999. Arthropods 1: Crustaceans. Pp. 129148 in Swift, A. and Martill, D. M., eds. Fossils of the Rhaetian Penarth Group. Palaeontological Association, London.Google Scholar
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C., Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M., Yasuhara, M., and Zhang, J.. 2018. Declining oxygen in the global ocean and coastal waters. Science 359:eaam7240.CrossRefGoogle ScholarPubMed
Brom, K. R., Salamon, M. A., and Gorzelak, P.. 2018. Body-size increase in crinoids following the end-Devonian mass extinction. Scientific Reports 8:9606.CrossRefGoogle ScholarPubMed
Brown, J. H., Calder, W. A., and Kodric-Brown, A.. 1978. Correlates and consequences of body size in nectar-feeding birds. American Zoologist 18:687700.CrossRefGoogle Scholar
Brown, J. H., Marquet, P. A., and Taper, M. L.. 1993. Evolution of body-size—consequences of an energetic definition of fitness. American Naturalist 142:573584.CrossRefGoogle ScholarPubMed
Calder, W. A. 1984. Size, function, and life history. Harvard University Press, Cambridge, Mass.Google Scholar
Clauset, A., and Erwin, D. H.. 2008. The evolution and distribution of species body size. Science 321:399401.CrossRefGoogle ScholarPubMed
Crne, A. E., Weissert, H., Gorican, S., and Bernasconi, S. M.. 2011. A biocalcification crisis at the Triassic–Jurassic boundary recorded in the Budva Basin (Dinarides, Montenegro). Geological Society of America Bulletin 123:4050.CrossRefGoogle Scholar
Damborenea, S. E., Echevarría, E., and Ros-Franch, S.. 2013. Southern Hemisphere palaeobiogeography of Triassic–Jurassic marine bivalves. Springer, New York.CrossRefGoogle Scholar
Daufresne, M., Lengfellner, K., and Sommer, U.. 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences USA 106:12788.CrossRefGoogle ScholarPubMed
Davies, J. H. F. L., Marzoli, A., Bertrand, H., Youbi, N., Ernesto, M., and Schaltegger, U.. 2017. End-Triassic mass extinction started by intrusive CAMP activity. Nature Communications 8:15596.CrossRefGoogle ScholarPubMed
Dishon, G., Grossowicz, M., Krom, M., Guy, G., Gruber, D. F., and Tchernov, D.. 2020. Evolutionary traits that enable Scleractinian corals to survive mass extinction events. Scientific Reports 10:3903.CrossRefGoogle ScholarPubMed
Dommergues, J. L., Montuire, S., and Neige, P.. 2002. Size patterns through time: the case of the Early Jurassic ammonite radiation. Paleobiology 28:423434.2.0.CO;2>CrossRefGoogle Scholar
Dunhill, A. M., Foster, W. J., Azaele, S., Sciberras, J., and Twitchett, R. J.. 2018. Modelling determinants of extinction across two Mesozoic hyperthermal events. Proceedings of the Royal Society of London B 285:8.Google ScholarPubMed
Ernest, S. K. M. 2005. Body size, energy use, and community structure of small mammals. Ecology 86:14071413.CrossRefGoogle Scholar
Fagerstrom, J. A. 1964. Fossil communities in paleoecology: their recognition and significance. Geological Society of America Bulletin 75:11971216.CrossRefGoogle Scholar
Finnegan, S., Heim, N. A., Peters, S. E., and Fischer, W. W.. 2012. Climate change and the selective signature of the Late Ordovician mass extinction. Proceedings of the National Academy of Sciences USA 109:68296834.CrossRefGoogle ScholarPubMed
Forster, J., Hirst, A. G., and Atkinson, D.. 2012. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proceedings of the National Academy of Sciences USA 109:19310.CrossRefGoogle ScholarPubMed
Foster, W. J., Danise, S., Price, G. D., and Twitchett, R. J.. 2017. Subsequent biotic crises delayed marine recovery following the late Permian mass extinction event in northern Italy. PLoS ONE 12(3):e0172321.CrossRefGoogle ScholarPubMed
Foster, W. J., Danise, S., Price, G. D., and Twitchett, R. J.. 2018. Paleoecological analysis of benthic recovery after the Late Permian mass extinction event in eastern Lombardy, Italy. Palaios 33:266281.CrossRefGoogle Scholar
Foster, W. J., Gliwa, J., Lembke, C., Pugh, A. C., Hofmann, R., Tietje, M., Varela, S., Foster, L. C., Korn, D., and Aberhan, M.. 2020. Evolutionary and ecophenotypic controls on bivalve body size distributions following the end-Permian mass extinction. Global and Planetary Change 185:13.CrossRefGoogle Scholar
Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L., and Heinsohn, R.. 2011. Declining body size: a third universal response to warming? Trends in Ecology and Evolution 26:285291.CrossRefGoogle ScholarPubMed
Garilli, V., Rodolfo-Metalpa, R., Scuderi, D., Brusca, L., Parrinello, D., Rastrick, S. P. S., Foggo, A., Twitchett, R. J., Hall-Spencer, J. M., and Milazzo, M.. 2015. Physiological advantages of dwarfing in surviving extinctions in high-CO2 oceans. Nature Climate Change 5:678682.CrossRefGoogle Scholar
Gearty, W., McClain, C. R., and Payne, J. L.. 2018. Energetic tradeoffs control the size distribution of aquatic mammals. Proceedings of the National Academy of Sciences USA 115:4194.CrossRefGoogle ScholarPubMed
Girard, C., and Renaud, S.. 2012. Disparity changes in 370 Ma Devonian fossils: the signature of ecological dynamics? PLoS ONE 7(4):112.CrossRefGoogle ScholarPubMed
Gittleman, J. L., and Kot, M.. 1990. Adaptation—statistics and a null model for estimating phylogenetic effects. Systematic Zoology 39:227241.CrossRefGoogle Scholar
Gotelli, N. J., and Graves, G. R.. 1996. Null models in ecology. Smithsonian Institution Press, Washington, D.C.Google Scholar
Gould, S. J. 1988. Trends as changes in variance—a new slant on progress and directionality in evolution. Journal of Paleontology 62:319329.CrossRefGoogle Scholar
Gradstein, F. M., Ogg, J. G., Schmitz, M. D. and Ogg, G. M.. 2020. Geologic time scale 2020. Elsevier, Amsterdam.Google Scholar
Greene, S. E., Martindale, R. C., Ritterbush, K. A., Bottjer, D. J., Corsetti, F. A., and Berelson, W. M.. 2012. Recognising ocean acidification in deep time: an evaluation of the evidence for acidification across the Triassic–Jurassic boundary. Earth-Science Reviews 113:7293.CrossRefGoogle Scholar
Hallam, A. 1960. A sedimentary and faunal analysis of the Blue Lias of Dorset and Glamorgan. Philosophical Transactions of the Royal Society of London B 243:144.Google Scholar
Hallam, A., and Wignall, P. B.. 1997. Mass extinctions and their aftermath. Oxford University Press, New York.Google Scholar
Hallam, A., and Wignall, P. B.. 1999. Mass extinctions and sea-level changes. Earth-Science Reviews 48:217250.CrossRefGoogle Scholar
Harnik, P. G. 2011. Direct and indirect effects of biological factors on extinction risk in fossil bivalves. Proceedings of the National Academy of Sciences USA 108:1359413599.CrossRefGoogle ScholarPubMed
Harnik, P. G., Fitzgerald, P. C., Payne, J. L., and Carlson, S. J.. 2014. Phylogenetic signal in extinction selectivity in Devonian terebratulide brachiopods. Paleobiology 40:675692.CrossRefGoogle Scholar
Harries, P. J., and Knorr, P. O.. 2009. What does the “Lilliput Effect” mean? Palaeogeography, Palaeoclimatology, Palaeoecology 284:410.CrossRefGoogle Scholar
Hautmann, M., Benton, M. J., and Tomasovych, A.. 2008. Catastrophic ocean acidification at the Triassic–Jurassic boundary. Neues Jahrbuch Fur Geologie Und Palaontologie–Abhandlungen 249:119127.CrossRefGoogle Scholar
Hauton, C. 2016. Effects of salinity as a stressor to aquatic invertebrates. Stressors in the marine environment. Oxford University Press, Oxford.CrossRefGoogle Scholar
Hayami, I. 1978. Notes on the rates and patterns of size change in evolution. Paleobiology 4:252260.CrossRefGoogle Scholar
He, T., Dal Corso, J., Newton, R. J., Wignall, P. B., Mills, B. J. W., Todaro, S., Di Stefano, P., Turner, E. C., Jamieson, R. A., Randazzo, V., Rigo, M., Jones, R. E., and Dunhill, A. M.. 2020. An enormous sulfur isotope excursion indicates marine anoxia during the end-Triassic mass extinction. Science Advances 6:eabb6704.CrossRefGoogle ScholarPubMed
He, W. H., Twitchett, R. J., Zhang, Y., Shi, G. R., Feng, Q. L., Yu, J. X., Wu, S. B., and Peng, X. F.. 2010. Controls on body size during the Late Permian mass extinction event. Geobiology 8:391402.CrossRefGoogle ScholarPubMed
He, W. H., Shi, G. R., Yang, T. L., Zhang, K. X., Yue, M. L., Xiao, Y. F., Wu, H. T., Chen, B., and Wu, S. B.. 2016. Patterns of brachiopod faunal and body-size changes across the Permian-Triassic boundary: evidence from the Daoduishan section in Meishan area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 448:7284.CrossRefGoogle Scholar
Hermaniuk, A., van de Pol, I. L. E., and Verberk, W. C. E. P.. 2021. Are acute and acclimated thermal effects on metabolic rate modulated by cell size? A comparison between diploid and triploid zebrafish larvae. Journal of Experimental Biology 224:jeb227124.Google ScholarPubMed
Hesselbo, S. P., Robinson, S. A., and Surlyk, F.. 2004. Sea-level change and facies development across potential Triassic–Jurassic boundary horizons, SW Britain. Journal of the Geological Society, London 161:365379.CrossRefGoogle Scholar
Hildrew, A., Raffaelli, D., and Edmonds-Brown, R.. 2007. Body size: the structure and function of aquatic ecosystems. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Hodges, P. 2000. The early Jurassic Bivalvia from the Hettangian and lower Sinemurian of south-west Britain: part 1. Palaeontographical Society Monograph 154:164.CrossRefGoogle Scholar
Holland, S. M. 2000. The quality of the fossil record: a sequence stratigraphic perspective. Paleobiology 26(S4):148168.CrossRefGoogle Scholar
Holland, S. M. 2016. Ecological disruption precedes mass extinction. Proceedings of the National Academy of Sciences USA 113:83498351.CrossRefGoogle ScholarPubMed
Hunt, G. 2004. Phenotypic variation in fossil samples: modeling the consequences of time-averaging. Paleobiology 30:426443.2.0.CO;2>CrossRefGoogle Scholar
Hüsing, S. K., Beniest, A., van der Boon, A., Abels, H. A., Deenen, M. H. L., Ruhl, M., and Krijgsman, W.. 2014. Astronomically-calibrated magnetostratigraphy of the Lower Jurassic marine successions at St. Audrie's Bay and East Quantoxhead (Hettangian–Sinemurian; Somerset, UK). Palaeogeography, Palaeoclimatology, Palaeoecology 403:4356.CrossRefGoogle Scholar
Jablonski, D. 2008. Extinction and the spatial dynamics of biodiversity. Proceedings of the National Academy of Sciences USA 105:1152811535.CrossRefGoogle ScholarPubMed
Jablonski, D., and Raup, D. M.. 1995. Selectivity of end-Cretaceous marine bivalve extinctions. Science 268:389391.CrossRefGoogle ScholarPubMed
Janevski, G. A., and Baumiller, T. K.. 2009. Evidence for extinction selectivity throughout the marine invertebrate fossil record. Paleobiology 35:553564.CrossRefGoogle Scholar
Jaraula, C. M. B., Grice, K., Twitchett, R. J., Böttcher, M. E., LeMetayer, P., Dastidar, A. G., and Opazo, L. F.. 2013. Elevated pCO2 leading to Late Triassic extinction, persistent photic zone euxinia, and rising sea levels. Geology 41:955958.CrossRefGoogle Scholar
Kendall, M. A., Warwick, R. M., and Somerfield, P. J.. 1997. Species size distributions in Arctic benthic communities. Polar Biology 17:389392.CrossRefGoogle Scholar
Kidder, D. L., and Worsley, T. R.. 2010. Phanerozoic large igneous provinces (LIPs), HEATT (haline euxinic acidic thermal transgression) episodes, and mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology 295:162191.CrossRefGoogle Scholar
Kiessling, W., Aberhan, M., Brenneis, B., and Wagner, P. J.. 2007. Extinction trajectories of benthic organisms across the Triassic–Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 244:201222.CrossRefGoogle Scholar
Kocsis, A. T., Reddin, C. J., Alroy, J., and Kiessling, W.. 2019. The R package divDyn for quantifying diversity dynamics using fossil sampling data. Methods in Ecology and Evolution 10:735743.CrossRefGoogle Scholar
Kozłowski, J., and Gawelczyk, A. T.. 2002. Why are species’ body size distributions usually skewed to the right? Functional Ecology 16:419432.CrossRefGoogle Scholar
Labra, F. A., Hernandez-Miranda, E., and Quinones, R. A.. 2015. Dynamic relationships between body size, species richness, abundance, and energy use in a shallow marine epibenthic faunal community. Ecology and Evolution 5:391408.CrossRefGoogle Scholar
Le Bris, A., Pershing, A. J., Gaudette, J., Pugh, T. L., and Reardon, K. M.. 2017. Multi-scale quantification of the effects of temperature on size at maturity in the American lobster (Homarus americanus). Fisheries Research 186:397406.CrossRefGoogle Scholar
Lindström, S., Erlström, M., Piasecki, S., Nielsen, L. H., and Mathiesen, A.. 2017. Palynology and terrestrial ecosystem change of the Middle Triassic to lowermost Jurassic succession of the eastern Danish Basin. Review of Palaeobotany and Palynology 244:6595.CrossRefGoogle Scholar
Lockwood, R. 2005. Body size, extinction events, and the early Cenozoic record of veneroid bivalves: a new role for recoveries? Paleobiology 31:578590.CrossRefGoogle Scholar
Lord, A. R., and Davis, P. G.. 2010. Fossils from the Lower Lias of the Dorset coast. Palaeontological Association, London.Google Scholar
Mancini, E. A. 1978. Origin of micromorph faunas in the geologic record. Journal of Paleontology 52:311322.Google Scholar
Mander, L., and Twitchett, R. J.. 2008. Quality of the Triassic–Jurassic bivalve fossil record in northwest Europe. Palaeontology 51:12131223.CrossRefGoogle Scholar
Mander, L., Twitchett, R. J., and Benton, M. J.. 2008. Palaeoecology of the Late Triassic extinction event in the SW UK. Journal of the Geological Society, London 165:319332.CrossRefGoogle Scholar
Manly, B. F. J. 1996. Are there clumps in body-size distributions? Ecology 77:8186.CrossRefGoogle Scholar
Marquet, P. A., and Taper, M. L.. 1998. On size and area: patterns of mammalian body size extremes across landmasses. Evolutionary Ecology 12:127139.CrossRefGoogle Scholar
Martinez-Diaz, J. L., Phillips, G. E., Nyborg, T., Espinosa, B., Tavora, V. D., Centeno-Garcia, E., and Vega, F. J.. 2016. Lilliput effect in a retroplumid crab (Crustacea: Decapoda) across the K/Pg boundary. Journal of South American Earth Sciences 69:1124.CrossRefGoogle Scholar
Maurer, B. A. 1998. The evolution of body size in birds. I. Evidence for non–random diversification. Evolutionary Ecology 12:925934.Google Scholar
Maurer, B. A. 2003. Adaptive diversification of body size: the roles of physical constraint, energetics, and natural selection. Pp. 174191 in Blackburn, T. M. and Gaston, K. J., eds. Macroecology: causes and consequences. Blackwell, Oxford.Google Scholar
Maurer, B. A., and Marquet, P. A.. 2013. Animal Body Size. Pp. 168186 in Felisa, A. S. and Lyons, S. K., eds. Processes responsible for patterns in body mass distributions. University of Chicago Press, Chicago.Google Scholar
McClain, C. R. 2004. Connecting species richness, abundance and body size in deep-sea gastropods. Global Ecology and Biogeography 13:327334.CrossRefGoogle Scholar
McClain, C. R., Gullett, T., Jackson-Ricketts, J., and Unmack, P. J.. 2012. Increased energy promotes size-based niche availability in marine mollusks. Evolution 66:22042215.CrossRefGoogle ScholarPubMed
McClain, C. R., Barry, J. P., and Webb, T. J.. 2018. Increased energy differentially increases richness and abundance of optimal body sizes in deep-sea wood falls. Ecology 99:184195.CrossRefGoogle ScholarPubMed
McElwain, J. C., Beerling, D. J., and Woodward, F. I.. 1999. Fossil plants and global warming at the Triassic–Jurassic boundary. Science 285:13861390.CrossRefGoogle ScholarPubMed
McKinney, M. L. 1990. Trends in body-size evolution. Pp. 75118 in McNamara, K. J., ed. Evolutionary trends. Belhaven Press, London.Google Scholar
McKinney, M. L. 1997. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annual Review of Ecology and Systematics 28:495516.CrossRefGoogle Scholar
McRoberts, C. A., and Newton, C. R.. 1995. Selective extinction among end-Triassic European bivalves. Geology 23:102104.2.3.CO;2>CrossRefGoogle Scholar
McShea, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48:17471763.CrossRefGoogle ScholarPubMed
Metcalfe, B., Twitchett, R. J., and Price–Lloyd, N.. 2011. Changes in size and growth rate of “Lilliput” animals in the earliest Triassic. Palaeogeography, Palaeoclimatology, Palaeoecology 308:171180.CrossRefGoogle Scholar
Millien, V., Kathleen Lyons, S., Olson, L., Smith, F. A., Wilson, A. B., and Yom-Tov, Y.. 2006. Ecotypic variation in the context of global climate change: revisiting the rules. Ecology Letters 9:853869.CrossRefGoogle ScholarPubMed
Monroe, M. J., and Bokma, F.. 2013. Mass extinctions do not explain skew in interspecific body size distributions. Journal of Zoological Systematics and Evolutionary Research 51:1318.CrossRefGoogle Scholar
Morten, S. D., and Twitchett, R. J.. 2009. Fluctuations in the body size of marine invertebrates through the Pliensbachian–Toarcian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology 284:2938.CrossRefGoogle Scholar
Novack-Gottshall, P. M. 2008. Ecosystem-wide body-size trends in Cambrian–Devonian marine invertebrate lineages. Paleobiology 34:210228.CrossRefGoogle Scholar
Orzechowski, E. A., Lockwood, R., Byrnes, J. E. K., Anderson, S. C., Finnegan, S., Finkel, Z. V., Harnik, P. G., Lindberg, D. R., Liow, L. H., Lotze, H. K., McClain, C. R., McGuire, J. L., O'Dea, A., Pandolfi, J. M., Simpson, C., and Tittensor, D. P.. 2015. Marine extinction risk shaped by trait-environment interactions over 500 million years. Global Change Biology 21:35953607.CrossRefGoogle ScholarPubMed
Paradis, E., and Schliep, K.. 2019. APE 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526528.CrossRefGoogle ScholarPubMed
Payne, J. L. 2005. Evolutionary dynamics of gastropod size across the end-Permian extinction and through the Triassic recovery interval. Paleobiology 31:269290.CrossRefGoogle Scholar
Payne, J. L., McClain, C. R., Boyer, A. G., Brown, J. H., Finnegan, S., Kowalewski, M., Krause, R. A., Lyons, S. K., McShea, D. W., Novack-Gottshall, P. M., Smith, F. A., Spaeth, P., Stempien, J. A., and Wang, S. C.. 2011. The evolutionary consequences of oxygenic photosynthesis: a body size perspective. Photosynthesis Research 107:3757.CrossRefGoogle ScholarPubMed
Payne, J. L., Bush, A. M., Chang, E. T., Heim, N. A., Knope, M. L., and Pruss, S. B.. 2016a. Extinction intensity, selectivity and their combined macroevolutionary influence in the fossil record. Biology Letters 12(10).CrossRefGoogle ScholarPubMed
Payne, J. L., Bush, A. M., Heim, N. A., Knope, M. L., and McCauley, D. J.. 2016b. Ecological selectivity of the emerging mass extinction in the oceans. Science 353:12841286.CrossRefGoogle ScholarPubMed
Peters, R. H. 1983. The ecological implications of body size. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Piazza, V., Duarte, L. V., Renaudie, J., and Aberhan, M.. 2019. Reductions in body size of benthic macroinvertebrates as a precursor of the early Toarcian (Early Jurassic) extinction event in the Lusitanian Basin, Portugal. Paleobiology 45:296316.CrossRefGoogle Scholar
Pietsch, C., Petsios, E., and Bottjer, D. J.. 2016. Sudden and extreme hyperthermals, low-oxygen, and sediment influx drove community phase shifts following the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 451:183196.CrossRefGoogle Scholar
Pugh, A. C., Danise, S., Brown, J. R., and Twitchett, R. J.. 2014. Benthic ecosystem dynamics following the Late Triassic mass extinction event: palaeoecology of the Blue Lias Formation, Lyme Regis, UK. Geoscience in South-West England 13:255266.Google Scholar
Radley, J. D. 2002. The Late Triassic and Early Jurassic succession at Southam. Cement Works, Warwickshire. Mercian Geologist 15:171174.Google Scholar
Radley, J. D., Twitchett, R. J., Mander, L., and Cope, J. C. W.. 2008. Discussion on palaeoecology of the Late Triassic extinction event in the SWUK, Journal, Vol. 165, 2008, pp. 319–332. Journal of the Geological Society, London 165:988992.Google Scholar
R Core Team. 2019. R: a language and environment for statistical computing, Version 3.6.0. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Rego, B. L., Wang, S. C., Altiner, D., and Payne, J. L.. 2012. Within- and among-genus components of size evolution during mass extinction, recovery, and background intervals: a case study of Late Permian through Late Triassic foraminifera. Paleobiology 38:627643.CrossRefGoogle Scholar
Rex, M. A., and Etter, R. J.. 1998. Bathymetric patterns of body size: implications for deep-sea biodiversity. Deep Sea Research, part II (Topical Studies in Oceanography) 45:103127.CrossRefGoogle Scholar
Riding, R., Liang, L. Y., Lee, J. H., and Virgone, A.. 2019. Influence of dissolved oxygen on secular patterns of marine microbial carbonate abundance during the past 490 Myr. Palaeogeography, Palaeoclimatology, Palaeoecology 514:135143.CrossRefGoogle Scholar
Rita, P., Natscher, P., Duarte, L. V., Weis, R., and De Baets, K.. 2019. Mechanisms and drivers of belemnite body-size dynamics across the Pliensbachian–Toarcian crisis. Royal Society Open Science 6(12).CrossRefGoogle ScholarPubMed
Ritterbush, K. A., Bottjer, D. J., Corsetti, F. A., and Rosas, S.. 2014. New evidence on the role of siliceous sponges in ecology and sedimentary facies development in eastern Panthalassa following the Triassic–Jurassic mass extinction. Palaios 29:652668.CrossRefGoogle Scholar
Rivadeneira, M. M., and Marquet, P. A.. 2007. Selective extinction of late Neogene bivalves on the temperate Pacific coast of South America. Paleobiology 33:455468.CrossRefGoogle Scholar
Ros, S., and Echevarria, J.. 2012. Ecological signature of the end-Triassic biotic crisis: what do bivalves have to say? Historical Biology 24:489503.CrossRefGoogle Scholar
Roy, K. 2008. Evolution. Dynamics of body size evolution. Science 321:14511452.Google ScholarPubMed
Roy, K., Jablonski, D., and Martien, K. K.. 2000. Invariant size-frequency distributions along a latitudinal gradient in marine bivalves. Proceedings of the National Academy of Sciences USA 97:13150.CrossRefGoogle ScholarPubMed
Rubalcaba, J. G., Verberk, W. C. E. P., Hendriks, A. J., Saris, B., and Woods, H. A.. 2020. Oxygen limitation may affect the temperature and size dependence of metabolism in aquatic ectotherms. Proceedings of the National Academy of Sciences USA 117:31963.CrossRefGoogle ScholarPubMed
Ruhl, M., and Kurschner, W. M.. 2011. Multiple phases of carbon cycle disturbance from large igneous province formation at the Triassic–Jurassic transition. Geology 39:431434.CrossRefGoogle Scholar
Ruhl, M., Deenen, M. H. L., Abels, H. A., Bonis, N. R., Krijgsman, W., and Kurschner, W. M.. 2010. Astronomical constraints on the duration of the early Jurassic Hettangian stage and recovery rates following the end-Triassic mass extinction (St Audrie's Bay/East Quantoxhead, UK). Earth and Planetary Science Letters 295:262276.CrossRefGoogle Scholar
Ruhl, M., Bonis, N. R., Reichart, G. J., Damste, J. S. S., and Kurschner, W. M.. 2011. Atmospheric carbon injection linked to end-Triassic mass extinction. Science 333:430434.CrossRefGoogle ScholarPubMed
Ruhl, M., Hesselbo, S. P., Hinnov, L., Jenkyns, H. C., Xu, W. M., Riding, J. B., Storm, M., Minisini, D., Ullmann, C. V., and Leng, M. J.. 2016. Astronomical constraints on the duration of the Early Jurassic Pliensbachian Stage and global climatic fluctuations. Earth and Planetary Science Letters 455:149165.CrossRefGoogle Scholar
Schaltegger, U., Guex, J., Bartolini, A., Schoene, B., and Ovtcharova, M.. 2008. Precise U–Pb age constraints for end-Triassic mass extinction, its correlation to volcanism and Hettangian post-extinction recovery. Earth and Planetary Science Letters 267:266275.CrossRefGoogle Scholar
Schmidt-Nielsen, K. 1984. Scaling: why is animal size so important? Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Schoene, B., Guex, J., Bartolini, A., Schaltegger, U., and Blackburn, T. J.. 2010. Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology 38:387390.CrossRefGoogle Scholar
Sheridan, J. A., and Bickford, D.. 2011. Shrinking body size as an ecological response to climate change. Nature Climate Change 1:401406.CrossRefGoogle Scholar
Sigurdsen, A., and Hammer, O.. 2016. Body size trends in the Ordovician to earliest Silurian of the Oslo region. Palaeogeography, Palaeoclimatology, Palaeoecology 443:4956.CrossRefGoogle Scholar
Silverman, B. W. 1981. Using kernel density estimates to investigate multimodality. Journal of the Royal Statistical Society B 43:9799.Google Scholar
Simms, M. J., and Jeram, A. J.. 2007. Waterloo Bay, Larne, Northern Ireland: a potential global stratotype section and point (GSSP) for the base of the Jurassic System. Newsletter of the International Subcommission on Jurassic Stratigraphy, no. 34, 5068.Google Scholar
Smith, F. A., Payne, J. L., Heim, N. A., Balk, M. A., Finnegan, S., Kowalewski, M., Lyons, S. K., McClain, C. R., McShea, D. W., Novack-Gottshall, P. M., Anich, P. S., and Wang, S. C.. 2016. Body Size Evolution Across the Geozoic. Annual Review of Earth and Planetary Sciences 44:523553.CrossRefGoogle Scholar
Smith, J. T., and Roy, K.. 2006. Selectivity during background extinction: Plio-Pleistocene scallops in California. Paleobiology 32:408416.CrossRefGoogle Scholar
Stanley, S. M. 1973. An explanation for Cope's rule. Evolution 27:126.CrossRefGoogle ScholarPubMed
Stanley, S. M. 1979. Macroevolution pattern and process. Freeman, San Francisco.Google Scholar
Stige, L. C., and Kvile, K. Ø.. 2017. Climate warming drives large-scale changes in ecosystem function. Proceedings of the National Academy of Sciences USA 114:12100.CrossRefGoogle ScholarPubMed
Swift, A., and Martill, D. M., eds. 1999. Fossils of the Rhaetian Penarth Group. Paleontological Association, London.Google Scholar
Thibodeau, A. M., Ritterbush, K., Yager, J. A., West, A. J., Ibarra, Y., Bottjer, D. J., Berelson, W. M., Bergquist, B. A., and Corsetti, F. A.. 2016. Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction. Nature Communications 7:11147.CrossRefGoogle ScholarPubMed
Twitchett, R. J. 2007. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology 252:132144.CrossRefGoogle Scholar
Twitchett, R. J., and Barras, C. G.. 2004. Trace fossils in the aftermath of mass extinction events. Geological Society London Special Publications 228:397418.CrossRefGoogle Scholar
Urbanek, A. 1993. Biotic crises in the history of Upper Silurian graptoloids: a Palaeobiological model. Historical Biology 7:2950.CrossRefGoogle Scholar
van de Schootbrugge, B., Payne, J. L., Tomasovych, A., Pross, J., Fiebig, J., Benbrahim, M., Follmi, K. B., and Quan, T. M.. 2008. Carbon cycle perturbation and stabilization in the wake of the Triassic–Jurassic boundary mass-extinction event. Geochemistry Geophysics Geosystems 9:116.CrossRefGoogle Scholar
Verberk, W. C. E. P., Calosi, P., Brischoux, F., Spicer, J. I., Garland, T. J., and Bilton, D. T.. 2020. Universal metabolic constraints shape the evolutionary ecology of diving in animals. Proceedings of the Royal Society of London B 287:20200488Google ScholarPubMed
Verberk, W. C. E. P., Atkinson, D., Hoefnagel, K. N., Hirst, A. G., Horne, C. R., and Siepel, H.. 2021. Shrinking body sizes in response to warming: explanations for the temperature–size rule with special emphasis on the role of oxygen. Biological Reviews 96:247268.CrossRefGoogle ScholarPubMed
Wade, B. S., and Twitchett, R. J.. 2009. Extinction, dwarfing and the Lilliput effect. Palaeogeography, Palaeoclimatology, Palaeoecology 284:13.CrossRefGoogle Scholar
Warrington, G., Cope, J.C.W., and Ivimey-Cook, H. C.. 2008. The St Audrie's Bay–Doniford Bay section, Somerset, England: updated proposal for a candidate Global Stratotype Section and Point for the base of the Hettangian Stage, and of the Jurassic System. International Subcommission on Jurassic Stratigraphy Newsletter, no. 35, 174.Google Scholar
Warwick, R. M. 1984. Species size distributions in marine benthic communities. Oecologia 61:3240.CrossRefGoogle ScholarPubMed
Weedon, G. P., Page, K. N., and Jenkyns, H. C.. 2019. Cyclostratigraphy, stratigraphic gaps and the duration of the Hettangian Stage (Jurassic): insights from the Blue Lias Formation of southern Britain. Geological Magazine 156:14691509.CrossRefGoogle Scholar
Wignall, P. B. 2001. Sedimentology of the Triassic–Jurassic boundary beds in Pinhay Bay (Devon, SW England). Proceedings of the Geologists Association 112:349360.CrossRefGoogle Scholar
Wignall, P. B., and Atkinson, J. W.. 2020. A two-phase end-Triassic mass extinction. Earth-Science Reviews 208:103282.CrossRefGoogle Scholar
Wotzlaw, J. F., Guex, J., Bartolini, A., Gallet, Y., Krystyn, L., McRoberts, C. A., Taylor, D., Schoene, B., and Schaltegger, U.. 2014. Towards accurate numerical calibration of the Late Triassic: high-precision U-Pb geochronology constraints on the duration of the Rhaetian. Geology 42:571574.CrossRefGoogle Scholar
Zaffani, M., Jadoul, F., and Rigo, M.. 2018. A new Rhaetian delta C-13(org) record: carbon cycle disturbances, volcanism, end-Triassic mass Extinction (ETE). Earth-Science Reviews 178:92104.CrossRefGoogle Scholar
Zhang, Y., and He, W. H.. 2008. Evolutionary patterns of Productida (Brachiopoda) morphology during the Permian in South China. Science in China Series D 51:15891600.CrossRefGoogle Scholar