Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T22:38:40.513Z Has data issue: false hasContentIssue false

Biogeography and paleobiology

Published online by Cambridge University Press:  08 April 2016

David Jablonski
Affiliation:
Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721
Karl W. Flessa
Affiliation:
Department of Geosciences, University of Arizona, Tucson, Arizona 85721
James W. Valentine
Affiliation:
Department of Geological Sciences, University of California, Santa Barbara, California 93106

Abstract

In the past decade paleobiologists have applied the techniques of both ecological and historical biogeography, although vicariance/cladistic approaches have as yet had minimal impact. The traditional focus of paleobiogeographic study has been the province, a statistical entity defined by clusters of range endpoints of individual taxa. The study of such provinces has been useful in inferring past continental positions (although ambiguities remain that must be resolved using independent geological criteria) and in understanding the role of past global geographies in regulating biotic diversity through changes in the numbers and extent of provinces. This approach can be complemented by the treatment of geographic ranges of taxa as irreducible or emergent traits with far-reaching evolutionary effects upward and downward within a genealogical hierarchy. Temperature tolerances in benthic marine organisms appear to be by-products of selection for enzyme structures imparting favorable activity levels within the normal temperature range rather than direct products of selection for resistance to temperature extremes. Thus geographic range endpoints, which are also influenced by dispersal capability and the resulting scale of gene flow among disjunct populations, are not direct products of selection. However, the magnitudes of geographic ranges of species and clades behave as emergent properties and significantly influence taxonomic survivorship during background and mass extinctions in ways that are not extrapolations of effects at lower hierarchical levels. Biogeography shapes macroevolutionary patterns of origination and extinction during times of normal, background extinction and mass extinction. Preferential extinction among regions or among endemic rather than widespread clades can result in strong biases in the nature of the survivors of mass extinctions, with taxa being lost not because of selection against attributes of individual organisms but because of higher-order patterns of geographic selectivity.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Addicott, W. O. 1970. Latitudinal gradients in Tertiary molluscan faunas of the Pacific coast. Palaeogeogr. Palaeoclimatol. Palaeoecol. 8:287312.CrossRefGoogle Scholar
Allard, H. A. 1948. Length of day in the climates of past geological eras and its possible effects upon changes in plant life. Pp. 101120. In: Murneek, A. E. and Whyte, R. O., eds. Vernalization and Photoperiodism. Chron. Bot.; Waltham, Mass.Google Scholar
Axelrod, D. I. 1984. An interpretation of Cretaceous and Tertiary biota in polar regions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 45:105147.CrossRefGoogle Scholar
Barker, R. K. 1977. Tetrapod mass extinctions—a model of the regulation of speciation rates and immigration by cycles of topographic diversity. Pp. 439468. In: Hallam, A., ed. Patterns of Evolution. Elsevier; Amsterdam.Google Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology. 3:152167.Google Scholar
Bambach, R. K., Scotese, C. R., and Ziegler, A. M. 1980. Before Pangaea: the geographies of the Paleozoic world. Am. Sci. 68:2638.Google Scholar
Barron, E. J. 1983. A warm, equable Cretaceous: the nature of the problem. Earth Sci. Rev. 19:305338.Google Scholar
Barron, E.J. 1984. Climatic implications of the variable obliquity explanation of Cretaceous-Paleogene high-latitude floras. Geology. 12:595598.Google Scholar
Barron, E. J. and Washington, W. M. 1982. Cretaceous climate: a comparison of atmospheric simulations with the geologic record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 40:103133.Google Scholar
Bennett, D. K. 1980. Stripes do not a zebra make. I. Cladistic analysis of Equus. Syst. Zool. 29:272287.Google Scholar
Berner, R. A., Lasaga, A. G., and Garrels, R. M. 1983. The carbonate-silicate geochemical cyde and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283:641683.Google Scholar
Blatt, H. and Jones, R. L. 1975. Proportions of exposed igneous, metamorphic and sedimentary rocks. Geol. Soc. Am. Bull. 86:10851088.2.0.CO;2>CrossRefGoogle Scholar
Bonaparte, J. F. 1984. Late Cretaceous faunal interchange of terrestrial vertebrates between the Americas. Pp. 1924. In: Reif, W.-E. and Westphal, F., eds. Third Symposium on Mesozoic Terrestrial Ecosystems. ATTEMPTO Verlag; Tübingen.Google Scholar
Boucot, A. J. 1975. Evolution and Extinction Rate Controls. Elsevier; Amsterdam.Google Scholar
Boucot, A. J. 1983. Does evolution take place in an ecological vacuum? II. J. Paleontol. 57:130.Google Scholar
Boucot, A. J. and Gray, J. 1983. A Paleozoic Pangaea. Science. 222:571581.Google Scholar
Bretsky, P. W. 1973. Evolutionary patterns in the Paleozoic Bivalvia: Documentation and some theoretical considerations. Geol. Soc. Am. Bull. 84:20792096.Google Scholar
Briggs, J. C. 1981. Do centers of origin have a center? Paleobiology. 7:305307.Google Scholar
Brown, J. H. 1984. On the relationship between abundance and distribution of species. Amer. Nat. 124:255279.Google Scholar
Brown, J. H. and Gibson, A. C. 1983. Biogeography. Mosby; St. Louis. 643 pp.Google Scholar
Browne, J. 1983. The Secular Ark: Studies in the History of Biogeography. Harvard Univ. Press; Cambridge, Mass. 272 pp.Google Scholar
Bullock, T. H. 1955. Compensation for temperature in the metabolism and activity of poikilotherms. Biol. Rev. 30:311342.Google Scholar
Campbell, C. A. and Valentine, J. W. 1977. Comparability of modern and ancient faunal provinces. Paleobiology. 3:4957.Google Scholar
Christophersen, J. and Precht, H. 1953. Die Bedeutung des Wassergehaltes der Zelle für Temperaturanpassung. Biol. Zentralbl. 72:104119.Google Scholar
Cohen, A. S. and Schwartz, H. L. 1983. Spedation in molluscs from Turkana Basin. Nature. 304:659660.Google Scholar
Coney, P. J., Jones, D. L., and Monger, J. W. H. 1980. Cordilleran suspect terranes. Nature. 288:329333.Google Scholar
Connor, E. F. and McCoy, E. D. 1979. The statistics and biology of the species-area relationship. Amer. Nat. 113:791883.Google Scholar
Connor, E. F. and Simberloff, D. 1978. Species number and compositional similarity of the Galapagos flora and avifauna. Ecol. Monogr. 48:219248.Google Scholar
Cracraft, J. 1982. Geographic differentiation, dadistics and vicariance biogeography: reconstructing the tempo and mode of evolution. Am. Zool. 22:411424.Google Scholar
Cracraft, J. 1983. Cladistic analysis and vicariance biogeography. Am. Sci. 71:273281.Google Scholar
Crick, R. E. 1980. Integration of paleobiogeography and paleogeography: evidence from Arenigian nautiloid biogeography. J. Paleontol. 54:12181236.Google Scholar
Croizat, L. 1982. Vicariance/vicariism, panbiogeography, “vicariance biogeography,” etc.: a clarification. Syst. Zool. 31:291304.Google Scholar
Crowley, T. J. 1983. The geologic record of climatic change. Rev. Geophys. Space Phys. 21:828877.Google Scholar
Darlington, P. J. Jr. 1957. Zoogeography. Wiley; New York.Google Scholar
Douglas, J. G. and Williams, G. E. 1982. Southern polar forests: the Early Cretaceous floras of Victoria and their palaeoclimatic significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 39:171185.Google Scholar
Douglas, R. G. and Woodruff, F. 1981. Deep sea benthic foraminifera. Pp. 12331327. In: Emiliani, , ed. The Sea. Vol. 7. The Oceanic Lithosphere. Wiley-Intersdence; New York.Google Scholar
Doyle, R. F. 1985. Biogeographical studies of the Point Conception Region, California. Ph.D. dissertation, Univ. California, Santa Barbara.Google Scholar
Durham, J. W. 1950. Cenozoic marine climates of the Pacific Coast. Geol. Soc. Am. Bull. 61:12431264.CrossRefGoogle Scholar
Eisenmann, V. 1980. Les chevaux (Equus sensu latu) fossiles et actuels: cranes et dents jugales supérieures. Cahiers de Paléontol.; CNRS, Paris. Pp. 1186.Google Scholar
Fallaw, W. C. 1979. Trans-North Atlantic similarity among Mesozoic and Cenozoic invertebrates correlated with widening of the ocean basin. Geology. 7:398400.2.0.CO;2>CrossRefGoogle Scholar
Farmer, J. D. 1977. An adaptive model for the evolution of the ectoproct life cycle. Pp. 487517. In: Woolacott, R. M. and Zimmer, R. L., eds. Biology of Bryozoa. Academic Press; New York.Google Scholar
Flessa, K. W. 1975. Area, continental drift and mammalian diversity. Paleobiology. 1:189194.Google Scholar
Flessa, K. W. 1981. The regulation of mammalian faunal similarity among continents. J. Biogeogr. 8:427437.Google Scholar
Flessa, K. W., Barnett, S. G., Cornue, D. B., Lomaga, M. A., Lombardi, N., Miyazaki, J. M., and Murer, A. S. 1979. Geologic implications of the relationship between mammalian faunal similarity and geographic distance. Geology. 7:1518.Google Scholar
Flessa, K. W. and Hardy, M. C. 1985. Devonian conodont biogeography: quantitative analysis of provinciality. Palaeogeogr. Palaeoclimatol. Palaeoecol. in press.Google Scholar
Flessa, K. W. and Imbrie, J. 1973. Evolutionary pulsations: Evidence from Phanerozoic diversity patterns. Pp. 245284. In: Tarling, D. H. and Runcorn, S. K., eds. Implications of Continental Drift to the Earth Sciences. Vol. 1. Academic Press; London.Google Scholar
Flessa, K. W. and Sepkoski, J. J. Jr. 1978. On the relationship between Phanerozoic diversity and changes in habitable area. Paleobiology. 4:359366.Google Scholar
Flynn, J. J., MacFadden, B. J., and McKenna, M. C. 1984. Land-mammal ages, faunal heterochrony [sic], and temporal resolution in Cenozoic terrestrial sequences. J. Geol. 92:687705.Google Scholar
Frankel, H. 1984. Biogeography, before and after the rise of sea floor spreading. Stud. Hist. Phil. Sci. 15:141168.Google Scholar
Gentry, A. H. 1982. Patterns of neotropical plant species diversity. Evol. Biol. 15:184.Google Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. Harvard Univ. Press; Cambridge, Mass.Google Scholar
Gould, S. J. 1982. Darwinism and the expansion of evolutionary theory. Science. 216:380387.Google Scholar
Gray, J. and Boucot, A. J., eds. 1979. Historical Biogeography, Plate Tectonics, and the Changing Environment. Oregon State Univ. Press; Corvallis.Google Scholar
Gregor, B. 1970. Denudation of the continents. Nature. 228:273275.Google Scholar
Hallam, A., ed. 1973. Atlas of Palaeobiogeography. Elsevier; Amsterdam.Google Scholar
Hallam, A. 1977. Jurassic bivalve biogeography. Paleobiology. 3:5873.Google Scholar
Hallam, A. 1982. Patterns of speciation in Jurassic Gryphaea. Paleobiology. 8:354366.Google Scholar
Hallam, A. 1983a. Plate tectonics and evolution. Pp. 367386. In: Bendall, D. S., ed. Evolution from Molecules to Men. Cambridge Univ. Press; Cambridge.Google Scholar
Hallam, A. 1983b. Early and mid-Jurassic molluscan biogeography and the establishment of the central Atlantic seaway. Palaeogeogr. Palaeoclimatol. Palaeoecol. 43:181193.Google Scholar
Hallam, A. 1984. Pre-Quaternary sea-level changes. Ann. Rev. Earth Planet. Sci. 12:205243.Google Scholar
Hansen, T. A. 1980. Influence of larval dispersal and geographic distribution on species longevity in neogastropods. Paleobiology. 6:193207.Google Scholar
Harper, C. W. Jr. 1978. Groupings by locality in community ecology and paleoecology: tests of significance. Lethaia. 11:251257.Google Scholar
Heckel, P. H. and Witzke, B. J. 1979. Devonian world paleogeography determined from distribution of carbonates and related palaeoclimatic indicators. Spec. Pap. Palaeontol. 23:99123.Google Scholar
Henderson, R. A. and Heron, M. L. 1977. A probabilistic method of paleobiogeographic analysis. Lethaia. 10:115.Google Scholar
Hickey, L. J. 1984. Changes in the angiosperm flora across the Cretaceous-Tertiary boundary. Pp. 279313. In: Berggren, W. A. and Van Couvering, J. A., eds. Catastrophes and Earth History. Princeton Univ. Press; Princeton, N.J.Google Scholar
Hickey, L. J., West, R. M., Dawson, M. R., and Choi, D. K. 1983. Arctic terrestrial biota: paleomagnetic evidence of age disparity with mid-northern latitudes during the Late Cretaceous and Early Tertiary. Science. 221:11531156.Google Scholar
Hochachka, P. W. and Somero, G. N. 1984. Biochemical Adaptation. 537 pp. Princeton Univ. Press; Princeton, N.J.Google Scholar
Hoffman, A. and Szubdza-Studencka, B. 1982. Bivalve species duration and ecologic characteristics in the Badenian (Miocene) marine sandy facies of Poland. N. Jb. Geol. Paläontol. Abh. 163:122135.Google Scholar
Hotton, N. III. 1980. An alternative to dinosaur endotherm: the happy wanderers. Pp. 311350. In: Thomas, R. D. K. and Olson, E. C., eds. A Cold Look at the Warm-blooded Dinosaurs. Westview; Boulder, Colo.Google Scholar
Irving, E. 1983. Fragmentation and assembly of the continents, mid-Carboniferous to present. Geophys. Surv. 5:299333.Google Scholar
Jablonski, D. 1980. Apparent versus real biotic effects of transgression and regression. Paleobiology. 6:398407.Google Scholar
Jablonski, D. 1982. Evolutionary rates and modes in Late Cretaceous gastropods. Proc. 3d N. Am. Paleontol. Conv. 1:257262.Google Scholar
Jablonski, D. 1985a. Causes and consequences of mass extinctions: a comparative approach. In: Elliott, D. K., ed. Dynamics of Extinction. Wiley; New York.Google Scholar
Jablonski, D. 1985b. Marine regressions and mass extinctions: a test using the Recent biota. In: Valentine, J. W., ed. Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton Univ. Press; Princeton, N.J.Google Scholar
Jablonski, D. 1985c. Larval ecology and macroevolution in marine invertebrates. Bull. Mar. Sci. in press.Google Scholar
Jablonski, D. and Flessa, K. W. 1985. The taxonomic structure of shallow-water marine faunas: Implications for mass extinctions. Malacologia.Google Scholar
Jablonski, D., Sepkoski, J. J. Jr., Bottjer, D. J., and Sheehan, P. M. 1983. Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. Science. 222:11231125.Google Scholar
Jablonski, D. and Valentine, J. W. 1981. Onshore-offshore gradients in Recent eastern Pacific shelf faunas and their paleobiogeographic significance. Pp. 441453. In: Scudder, G. G. E. and Reveal, J. L., eds. Evolution Today. Proc. 2d Internat. Congr. Syst. Evol. Biol. Carnegie-Mellon Univ.; Pittsburgh.Google Scholar
Jackson, J. B. C. 1974. Biogeographic consequences of eurytopy and stenotopy among marine bivalves and their evolution significance. Amer. Nat. 108:541560.CrossRefGoogle Scholar
Kinch, M. P. 1980. Geographical distribution and the origin of life: the development of early nineteenth century British explanations. J. Hist. Biol. 13:91119.CrossRefGoogle ScholarPubMed
Klapper, G. and Johnson, J. G. 1980. Endemism and dispersal of Devonian conodonts. J. Paleontol. 54:400455.Google Scholar
Lefkovitch, L. P. 1984. A nonparametric method for comparing dissimilarity matrices, a general measure of biogeographical distance, and their application. Amer. Nat. 123:484499.Google Scholar
Lindsay, E. H., Opdyke, N. D., and Johnson, N. M. 1980. Pliocene dispersal of the horse Equus and late Cenozoic mammalian dispersal events. Nature. 287:135138.Google Scholar
Lindsay, E. H., Opdyke, N. D., and Johnson, N. M. 1984. Blancan-Hemphillian land mammals ages and Late Cenozoic mammal dispersal events. Ann. Rev. Earth Planet. Sci. 12:445488.Google Scholar
MacArthur, R. H. and Wilson, E. O. 1967. The Theory of Island Biogeography. Princeton Univ. Press; Princeton, N.J.Google Scholar
Marshall, L. G. 1981. The Great American Interchange—an invasion-induced crisis for South American mammals. Pp. 133229. In: Nitecki, M. H., ed. Biotic Crises in Ecological and Evolutionary Time. Academic Press; New York.Google Scholar
Marshall, L. G., Webb, S. D., Sepkoski, J. J. Jr., and Raup, D. M. 1982. Mammalian evolution and the Great American Interchange. Science. 215:13511357.Google Scholar
Matsuda, R. 1982. The evolutionary process in talitrid amphipods and salamanders in changing environments, with a discussion of “genetic assimilation” and some other evolutionary concepts. Can. J. Zool. 60:733749.Google Scholar
Matthews, R. K. and Poore, R. Z. 1980. Tertiary δ18O record and glacio-eustatic sea-level fluctuation. Geology. 8:501504.Google Scholar
Mayr, E., ed. 1952. The problem of land connections across the south Atlantic, with special reference to the Mesozoic. Am. Mus. Nat. Hist. Bull. 99:79258.Google Scholar
McCoy, E. D. and Connor, E. F. 1980. Latitudinal gradients in the species diversity of North American mammals. Evolution. 34:193203.Google Scholar
McCoy, E. D. and Heck, K. L. Jr. 1983. Centers of origin revisited. 8:354366.Google Scholar
McGuiness, K. A. 1984. Equations and explanations in the study of species-area curves. Biol. Rev. 59:423440.Google Scholar
McKenna, M. C. 1975. Fossil mammals and early Eocene North Atlantic land continuity. Ann. Missouri Bot. Gard. 62:335353.Google Scholar
McKenna, M. C. 1983. Holarctic landmass rearrangement, cosmic events, and Cenozoic terrestrial organisms. Ann. Missouri Bot. Gard. 70:459489.Google Scholar
Milner, A. R. and Norman, D. B. 1984. The biogeography of advanced ornithopod dinosaurs (Archosauria: Ornithischia)—a cladistic-vicariance model. In: Reif, W.-E. and Westphal, F., eds. Third Symp. Mesozoic Terrestrial Ecosystems. ATTEMPTO Verlag; Tübingen.Google Scholar
Monger, J. W. H. and Ross, C. A. 1971. Distribution of fusulinaceans in the western Canadian Cordillera. Can. J. Earth Sci. 8:259278.Google Scholar
Nelson, G. 1978. From Candolle to Croizat: comments on the history of biogeography. J. Hist. Biol. 11:269305.CrossRefGoogle ScholarPubMed
Nelson, G. and Platnick, N. 1981. Systematics and Biogeography: Cladistics and Vicariance. Columbia Univ. Press; New York.Google Scholar
Nelson, G. and Rosen, D. E., eds. 1981. Vicariance Biogeography: A Critique. Columbia Univ. Press; New York.Google Scholar
Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1983. Patterns in vascular land plant diversificattion. Nature. 303:614616.Google Scholar
Norris, G. and Miall, A. D. 1984. Arctic biostratigraphic heterochroneity. Science. 224:174175.Google Scholar
Owen, H. G. 1983. Atlas of Continental Displacement, 200 Million Years to the Present. 159 pp. Cambridge Univ. Press; Cambridge.Google Scholar
Padian, K. and Clemens, W. A. 1985. Terrestrial vertebrate diversity: episodes and insights. In: Valentine, J. W., ed. Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton Univ. Press; Princeton, N.J.Google Scholar
Patterson, C. 1981. Methods of paleobiogeography. Pp. 446500. In: Nelson, G. and Rosen, D. E., eds. Vicariance Biogeography: A Critique. Columbia Univ. Press; New York.Google Scholar
Patterson, C. 1983. Aims and methods in biogeography. Pp. 128. In: Sims, R. W., Price, J. H., and Whalley, P. E. S., eds. Evolution, Time and Space: The Emergence of the Biosphere. Academic Press; London.Google Scholar
Pielou, E. C. 1979. Biogeography. Wiley-Interscience; New York.Google Scholar
Precht, H. 1958. Concepts of temperature adaptation of unchanging reaction systems of cold-blooded animals. Pp. 5078. In: Prosser, C. L., ed. Physiological Adaptation. Am. Physiol. Soc.; Washington, D.C.Google Scholar
Prosser, C. L., ed. 1958. Physiological Adaptation. Am. Physiol. Soc.; Washington, D.C.Google Scholar
Prosser, C. L., ed. 1967. Molecular Mechanisms of Temperature Adaptation. Am. Assoc. Adv. Sci.; Washington, D.C.Google Scholar
Prosser, C. L. 1973. Comparative Animal Physiology. Saunders; Philadelphia.Google Scholar
Raup, D. M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology. 2:289297.Google Scholar
Raup, D. M. 1982. Biogeographic extinction: a feasibility test. Geol. Soc. Am. Pap. 190:277281.Google Scholar
Raup, D. M. and Crick, R. E. 1979. Measurement of faunal similarity in paleontology. J. Paleontol. 53:12131227.Google Scholar
Read, K. R. H. 1964. Ecology and environmental physiology of some Puerto Rico bivalve molluscs and a comparison with Boreal forms. Caribbean J. Sci. 4:459465.Google Scholar
Read, K. R. H. 1967. Thermostability of proteins in poikilotherms. Pp. 93106. In: Prosser, C. L., ed. Molecular Mechanisms of Temperature Adaptation. Am. Assoc. Adv. Sci.; Washington, D.C.Google Scholar
Rosen, D. E. 1978. Vicariant patterns and historical explanation in biogeography. Syst. Zool. 27:159188.Google Scholar
Rosenzweig, M. L. 1975. On continental steady states of diversity. Pp. 121140. In: Cody, M. L. and Diamond, J. M., eds. Ecology and Evolution of Communities. Harvard Univ. Press; Cambridge, Mass.Google Scholar
Ross, C. A. and Ross, J. R. P. 1981. Late Paleozoic faunas around the Paleopacific margin. Pp. 425440. In: Scudder, G. G. E. and Reveal, J. L., eds. Evolution Today. Proc. 2d Internal. Congr. Syst. Evol. Biol. Carnegie-Mellon Univ.; Pittsburgh.Google Scholar
Scheltema, R. S. 1977. Dispersal of marine invertebrate organisms: Paleobiogeographic and biostratigraphic implications. Pp. 73108. In: Kauffman, E. G. and Hazel, J. E., eds. Concepts and Methods of Biostratigraphy. Dowden, Hutchinson & Ross; Stroudsburg, Pa.Google Scholar
Scheltema, R. S. 1978. On the relationship between dispersal of pelagic veliger larvae and the evolution of marine prosobranch gastropods. Pp. 303322. In: Battaglia, B. and Beardmore, J. A., eds. Marine Organisms: Genetics, Ecology and Evolution. Plenum; New York.Google Scholar
Scheltema, R. S. 1979. Dispersal of pelagic larvae and the zoogeography of Tertiary marine benthic gastropods. Pp. 391397. In: Gray, J. and Boucot, A. J., eds. Historical Biogeography, Plate tectonics and the Changing Environment. Oregon State Univ. Press; Corvallis.Google Scholar
Schermer, E. R., Howell, D. G., and Jones, D. L. 1984. The origin of allochthonous terranes: perspectives on the growth and shaping of continents. Ann. Rev. Earth Planet. Sci. 12:107131.Google Scholar
Schopf, T. J. M. 1974. Permo-Triassic extinction: relation to sea-floor spreading. J. Geol. 82:129143.Google Scholar
Schopf, T. J. M. 1979. The role of biogeographic provinces in regulating marine faunal diversity through geologic time. Pp. 449457. In: Gray, J. and Boucot, A. J., eds. Historical Biogeography, Plate Tectonics, and the Changing Environment. Oregon State Univ. Press; Corvallis.Google Scholar
Scotese, C. R., Bambach, R. K., Barton, C., Van Der Voo, R., and Ziegler, A. M. 1979. Paleozoic base maps. J. Geol. 87:217277.Google Scholar
Sepkoski, J. J. Jr. 1976. Species diversity in the Phanerozoic: species-area effects. Paleobiology. 2:298303.Google Scholar
Sheehan, P. M. 1977. Species diversity in the Phanerozoic: a reflection of labor by systematists? Paleobiology. 3:325328.Google Scholar
Sheehan, P. M. 1982. Brachiopod macroevolution at the Ordovician-Silurian boundary. Proc. 3d N. Am. Paleontol. Conv. 2:477481.Google Scholar
Signor, P. W. III. 1982. Species richness in the Phanerozoic: compensating for sampling bias. Geology. 10:625628.Google Scholar
Signor, P. W. III. 1985. Real and apparent trends in species richness through time. In: Valentine, J. W., ed. Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton Univ. Press; Princeton, N.J.Google Scholar
Simberloff, D. 1974. Permo-Triassic extinctions: effects of area on biotic equilibrium. J. Geol. 82:267274.Google Scholar
Simberloff, D. 1978. Using island biogeographic distributions to determine if colonization is stochastic. Amer. Nat. 112:713726.Google Scholar
Simberloff, D. 1983a. Biogeography: the unification and maturation of a science. Pp. 411455. In: Brush, A. H. and Clark, G. A. Jr., eds. Perspectives in Ornithology. Cambridge Univ. Press; Cambridge.Google Scholar
Simberloff, D. 1983b. Biogeographic models, species' distributions and community organization. Pp. 5783. In: Sims, R. W., Price, J. H., and Whalley, P. E. S., eds. Evolution, Time and Space: The Emergence of the Biosphere. Academic Press; London.Google Scholar
Simberloff, D., Heck, K. L., McCoy, E. D., and Connor, E. F. 1981. There have been no statistical tests of cladistic biogeographical hypotheses. Pp. 4063. In: Nelson, G. and Rosen, D. E., eds. Vicariance Biogeography: A Critique. Columbia Univ. Press; New York.Google Scholar
Smith, A. G. and Briden, J. C. 1977. Mesozoic and Cenozoic Paleocontinental Maps. Pp. 63. Cambridge Univ. Press; Cambridge.Google Scholar
Sober, E. 1984. The Nature of Selection. MIT Press; Cambridge, Mass.Google Scholar
Srivastava, S. K. 1981. Evolution of Upper Cretaceous phytogeoprovinces and their pollen flora. Rev. Paleobot. Palynol. 35:155173.Google Scholar
Stanley, S. M. 1979. Macroevolution, Pattern and Process. W. H. Freeman; San Francisco.Google Scholar
Stanley, S. M. 1984. Marine mass extinctions: a dominant role for temperature. Pp. 69117. In: Nitecki, M. H., ed. Extinctions. Univ. Chicago Press, Chicago.Google Scholar
Stanley, S. M. and Campbell, L. D. 1981. Neogene mass extinction of western Atlantic molluscs. Nature. 293:457459.Google Scholar
Stehli, F. G. 1968. Taxonomic diversity gradients in pole location: the Recent model. Pp. 163227. In: Drake, E. T., ed. Evolution and Environment. Yale Univ. Press; New Haven, Conn.Google Scholar
Stehli, F. G., Douglas, R. G., and Kafescioglu, I. A. 1972. Models for the evolution of planktonic Foraminifera. Pp. 116128. In: Schopf, T. J. M., ed. Models in Paleobiology. Freeman, Cooper; San Francisco.Google Scholar
Stehli, F. G., Douglas, R. G., and Newell, N. D. 1969. Generation and maintenance of gradients in taxonomic diversity. Science. 164:947949.Google Scholar
Stehli, F. G. and Wells, J. W. 1971. Diversity and age patterns in hermatypic corals. Syst. Zool. 20:115126.Google Scholar
Stenseth, N. C. 1985. The tropics: cradle or museum? Oikos, in press.Google Scholar
Strathmann, R. R. 1978. The evolution and loss of feeding larval stages of marine invertebrates. Evolution. 32:894906.Google Scholar
Strauss, R. E. 1982. Statistical significance of species clusters in association analysis. Ecology. 63:634639.Google Scholar
Taylor, J. D., Morris, N. J., and Taylor, C. N. 1980. Food specialization and the evolution of predatory prosobranch gastropods. Palaeontology. 23:375409.Google Scholar
Taylor, M. E. and Forrester, R. M. 1979. Distributional model for marine isopod crustaceans and its bearing on early Paleozoic paleozoogeography and continental drift. Geol. Soc. Am. Bull. 90:405413.Google Scholar
Thompson, M. L., Wheeler, H. E., and Danner, W. R. 1950. Middle and Upper Permian fusulinids of Washington and British Columbia. Cushman Found. Foram. Res. Contrib. 1, Pts. 3 and 4, No. 8. Pp. 4663.Google Scholar
Tucker, M. E. and Benton, M. J. 1982. Triassic environments, climates and reptile evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 40:361379.CrossRefGoogle Scholar
Ushakov, B. 1964. Thermostability of cells and proteins of poikilotherms and its significance in speciation. Physiol. Rev. 44:518560.Google Scholar
Ushakov, B. 1967. Coupled evolutionary changes in protein thermostability. Pp. 107129. In: Prosser, C. L., ed. Molecular Mechanisms of Temperature Adaptation. Am. Assoc. Adv. Sci.; Washington, D.C.Google Scholar
Valentine, J. W. 1967. The influence of climatic fluctuations on species diversity within the Tethyan provincial system. In: Adams, C. G. and D. V. Ager, eds. Aspects of Tethyan Biogeography. Syst. Assoc. Publ. 7:153166.Google Scholar
Valentine, J. W. 1973a. Evolutionary Paleoecology of the Marine Biosphere. Prentice-Hall; Englewood Cliffs, N.J.Google Scholar
Valentine, J. W. 1973b. Phanerozoic taxonomic diversity: a test of alternate models. Science. 180:10781079.Google Scholar
Valentine, J. W. 1984a. Climate and Evolution in the shallow sea. Pp. 265277. In: Brenchley, P. J., ed. Fossils and Climate. Wiley; London.Google Scholar
Valentine, J. W. 1984b. Neogene marine climate trends: implications for biogeography and evolution of the shallow-sea biota. Geology. 12:647650.Google Scholar
Valentine, J. W., Foin, T. C., and Peart, D. 1978. A provincial model of Phanerozoic marine diversity. Paleobiology. 4:5566.Google Scholar
Valentine, J. W., and Jablonski, D. 1983. Larval adaptations and patterns of brachiopod diversity in space and time. Evolution. 37:10521061.Google Scholar
Valentine, J. W. and Moores, E. M. 1970. Plate tectonic regulation of faunal diversity and sea level: a model. Nature. 228:657659.Google Scholar
van der Spoel, S. 1983. Patterns in plankton distribution and the relation to speciation: the dawn of pelagic biogeography. Pp. 291334. In: Sims, R. W., Price, J. H., and Whalley, P. E. S., eds. Evolution, Time and Space: The Emergence of the Biosphere. Academic Press; London.Google Scholar
Vermeij, G. J. 1978. Biogeography and Adaptation. Harvard Univ. Press; Cambridge, Mass.Google Scholar
Vermeij, G. J. 1985. An examination of environments and geographical areas containing modern survivors of extinction-ravaged taxa. In: Elliott, D. K., ed. Dynamics of Extinction. Wiley; New York.Google Scholar
von Heune, F. 1928. Lebensbild der Saurischer—Vorkommens Keuper von Trossingen im Württemburg. Paleobiologica. 1:103116.Google Scholar
Vrba, E. S. and Eldredge, N. 1984. Individuals, hierarchies and processes: toward a more complete evolutionary theory. Paleobiology. 10:146171.Google Scholar
Yu, Wang, Copper, P., and Jia-yu, Rong. 1983. Distribution and morphology of the Devonian brachiopod Punctatrypa. J. Paleontol. 57:10671089.Google Scholar
Webb, S. D. 1969. Extinction-origination equilibria in Late Cenozoic land mammals of North America. Evolution. 23:688702.Google Scholar
Webb, S. D. 1984. On two kinds of rapid faunal turnover. Pp. 417436. In: Berggren, W. A. and Van Couvering, J. A., eds. Catastrophes and Earth History. Princeton Univ. Press; Princeton, N.J.Google Scholar
Wise, K. P., and Schopf, T. J. M. 1981. Was marine faunal diversity in the Pleistocene affected by changes in sea level? Paleobiology. 7:394399.Google Scholar
Wolfe, J. A. 1978. A paleobotanies interpretation of Tertiary climates in the Northern Hemisphere. Am. Sci. 66:694703.Google Scholar
Wolfe, J. A. 1980. Tertiary climates and floristic relationships at high latitudes in the Northern Hemisphere. Palaeogeogr. Palaeoclimatol. Palaeoecol. 30:313323.Google Scholar
Ziegler, A. M., Bambach, R. K., Parrish, J. T., Barrett, S. F., Gierlowski, E. H., Parker, W. C., Raymond, A., and Sepkoski, J. J. Jr. 1981. Paleozoic biogeography and climatology. Pp. 231266. In: Niklas, K. J., ed. Paleobotany, Paleoecology, and Evolution. Vol. 2. Praeger; New York.Google Scholar
Zinsmeister, W. J. and Feldmann, R. M. 1984a. Cenozoic high latitude heterochroneity of Southern Hemisphere marine faunas. Science. 224:281283.Google Scholar
Zinsmeister, W. J. and Feldmann, R. M. 1984b. Role of high latitude heterochroneity in the evolution of modern marine faunas (Abstr.). Geol. Soc. Am. Abstr. Prog. 16:705.Google Scholar